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ABSTRACT 

Relationships between the properties of f ibrous composites and 

the propert ies  of their  constituents a r e  evaluated. Bounds and expres -  

sions fo r  the effective e las t ic  moduli of mater ia ls  reinforced by hollow 

circular  f ibers  are derived by a variational method. Exact resul ts  a r e  

obtained for hexagonal a r r a y s  of identical f i be r s  and approximate resul ts  

for  random a r r a y s  of f ibers ,  which may have unequal c r o s s  sections. 

Typical numerical  r e su l t s  a r e  obtained for  technically important elastic 

moduli. The tensile strength of composite ma te r i a l s  consisting of a 

ductile ma t r ix  uniaxially reinforced by high strength, high stiffness f ibers  

are analyzed. The f ibers  a re  t reated a s  having a s ta t i s t ica l  distribution 

of imperfections which resul t  in fiber failure under applied s t r e s s .  The 

s ta t i s t ica l  accumulation of such f l a w s  resul ts  in fa i lure  of the composite. 

The application of the analysis is demonstrated by using glass  fiber 

strength d a t a  in  a n  evaluation of glass  fiber reinforced composites. 

Supporting experimental  studies a r e  described. These include measure-  

ments of strength and stiffness of particle reinforced ma t r ix  mater ia ls  

and the development of a n  experimental procedure for tensile testing of 

thin fibrous composites containing only a single layer  of f ibers.  Microscopic 

observation of the l a t t e r  specimens indicated random f iber  f r ac tu res  a t  loads 

significantly below the ultimate composite strength level. /&--- 
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I. INTRODUCTION 

The studies descr ibed in this report  a r e  directed toward the 

attainment of advanced composite structural  ma te r i a l s  for aerospace 

vehicle applications. 

understanding of the mechanics of deformation and failure of composites, 

and of the influence 

the constituents. 

The approach i s  through the enhancement of 

thereon of the properties of. and interactions between, 

The cu r ren t  availability and development of a var ie ty  of high 

strength and high stiffness f i b e r s  and  the rapidly growing technology of 

filament winding have motivated the in i t i a l  studies in the area of fiber 

reinforced composites. 

constants and ultimate tensile strength of such ma te r i a l s  a r e  t reated 

herein.  These problems have been studied previously, to a cer ta in  

extent, and the relationship of the previous work to the present  studies are  

described in the appropriate locations in the text. 

The initial tasks of evaluating effective e las t ic  

The e las t ic  constants are treated using the variational principals 

of elasticity to establish bounds o r  approximate expressions for the five 

elast ic  constants of a uniaxially reinforced fibrous composite. 

r e su l t s  indicate the relative effects of changes in ma t r ix  and fiber 

character is t ics  and have motivated experimental studies of the effect 

of particulate additives to the ma t r ix  and of changing the cross-sect ional  

shape of the fiber. 

biaxial stiffening a r e  a l so  considered and the e las t ic  constants for 

biaxially oriented voids in place of fibers is studied. 

These 

The control of material  density and the effect of 

The r e su l t s  of 
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these studies a r e  presented in section 11. 

The tensile strength of a fibrous composite is t reated with a 

statist ical  failure model, which is applicable to brit t le f ibers.  The 

analytical r e su l t s  a r e  applied to glass-plastic composites to  determine 

the direction of des i r ed  improvement in ma t r ix  character is t ics .  

experimental p rogram w a s  undertaken to qualify the analysis. 

test  specimens contained a single layer  of glass  f ibe r s  which enabled 

microscopic evaluation] by t ransmit ted light, of the internal failure 

process. 

section 111. 

An 

The 

The r e su l t s  of the tensile strength program a r e  described in  

Once the basic  relations between the composite and constituent 

properties a r e  established, i t  becomes necessa ry  to determine the 

relative importance of the various properties.  Thus, a s t ructural  

efficiency study which considers  generalized s t ruc tu res  and load 

environments must  be performed. As examples of this approach] the 

stability of a flat  plate, containing oriented voids, under in plane com- 

pressive loads is treated. 

s t r e s s e s  associated with the biaxial stiffening present  in laminates a r e  

studied. 

can provide guidelines fo r  the developmenc of improved compositeg. 

These s t ructural  application studies a r e  described in section IV. 

As a second problem of this type the shear 

Studies of this type utilizing the previously described analyses 
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11. ELASTIC CONSTANTS 

One of the initial requirements  for the definition of composite 

ma te r i a l  cha rac t e r i s t i c s  is for the effective elast i c  constants of the 

material .  

t reated as a t r ansve r se ly  isotropic medium character ized by five elastic 

constants. 

f i be r s  is presented in section A. 

e las t ic  behavior of laminates of uniaxially stiffened l a y e r s  can be 

studied in a straight forward fashion. 

with biaxially oriented voids a r e  described in section B. The experi-  

mental  studies motivated by the resul ts  of these analyses a r e  described 

in section C. 

In the case  of a uniaxial fiber a r r a y ,  the ma te r i a l  may be 

The evaluation of these constants for both solid and hollow 

With these constants available, the 

Elastic constants for  plates 
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A. FIBER REINFORCED MATERIALS 

1. Introduction 

In continuing sea rch  for lightweight ma te r i a l s  of grea t  s t rength 

and stiffness, ,considerable effort has  been made in recent  yea r s  in the 

technological development of fiber re inforced mater ia l s .  

consist of a relatively soft binder in which much stiffer f ibers  a r e  

Such ma te r i a l s  

embedded. The present  work is concerned with the theoret ical  study 

of the elastic proper t ies  of such ma te r i a l s  containing c i rcu lar  hollow 

o r  solid f ibers  which a r e  all oriented in one direction. 

that the binder and fiber ma te r i a l s  a r e  l inear ly  elastic,  isotropic,  and 

homogeneous. Because of fiber orientation the reinforced ma te r i a l  is 

It is he re  assumed 

anisotropic. 

Two cases  a r e  h e r e  considered. In the f i r s t ,  the f ibers  a r e  of 

identical c r o s s  section and form an  hexagonal a r r a y  in the t r ansve r se  

plane, and in the second the f ibers  may have different d i ame te r s ,  but with 

same ratio of inner to outer diameter  and a r e  randomly located in the 

t ransverse  plane. In both cases  the composite is macroscopical ly  

homogeneous and t ransverse ly  isotropic  (these concepts wi l l  be discussed 

below) and has five elastic moduli. 

sions for the effective e las t ic  moduli of the reinforced ma te r i a l s  in t e r m s  

of the elastic moduli and the geometric pa rame te r s  of its constituents. 

The problem then is to find expres -  

The problem of the prediction of e las t ic  moduli of macroscopical ly  

isotropic composites has  recent ly  been t rea ted  by bounding techniques, 

using variational principles of the theory of elasticity. 
# 

Methods suitable 
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for a r b i t r a r y  phase geometry have been given by Paul  c11 and Hashin 

and Shtrikman [ 2 , 3 1  and for specified ( spher ica l  inclusions) phase 

geometry by Hashin [4I .  Methods for a r b i t r a r y  phase geometry,  

although in principle applicable, a r e  of little value for the present  

problem since they cannot distinguish between the present  specified 

geometry and an a r b i t r a r y  mixture  of binder, fibkr mater ia l  and voids, 

possessing the same  e las t ic  symmetry  as the fiber re inforced mater ia l .  

Because of the void phase these methods would give ze ro  lower bounds 

for the effective e las t ic  moduli. 

bounding method closely related to the one employed in [ 4  1 i s  used. 

The analysis i s  based on the principles of minimum potential and 

minimum complementary energy and makes use  of the present  specific 

geometry. 

In the present paper a variational 

The re  has been little previous theoretical work in  the present  

specific subject. 

Young's modulus in fiber direction can be evaluated by the "law of 

mixtures".  The effect of discontinuous fibers upon this longitudinal 

modulus has been studied in an approximate fashion by Outwater [SI 

and Rosen,  Ket ler  & Hashin [71 .  

has  been t reated by Hill and Cross ley  E81 who investigated the elastic 

behavior of an  e las t ic  ma te r i a l  containing long f ibe r s ,  of identical square 

c r o s s  sections, a r ranged  in a square a r ray .  

has in this case  s ix  elastic moduli. 

these were  derived by variational methods, using piecewise constant 

admis  sible fields. 

It has  been assumed by Dietz [ 5 1  and o thers  that the 

A problem related to the present  one 

The anisotropic composite 

Rigorously valid bounds for five of 
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The five elastic moduli of the reinforced ma te r i a l  he re  considered 

a r e  rigorously bounded (except for the insignificant e r r o r  involved in 

fulfilment of fiber end conditions in the St. Venant sense)  for the case  

of identical f ibers  a r r anged  in an  hexagonal a r r ay .  F o r  random fiber 

arrangement  a geometric approximation is involved. 

in this ca se  yields coincident bounds, and thus approximate expressions,  

The bounding method 

for four of the moduli and non-coincident bounds for a remaining modulus. 

First, the general  method of applying variational principles is descr ibed and 

then the method is applied to each of the moduli. Typical numerical  

resu l t s  a r e  presented for severa l  of the m o r e  commonly used moduli. 

Required solutions to cer ta in  boundary value problems for composite 

c i rcular  cylinders a r e  presented. 

s t r a i n  bulk and shear  moduli originally appeared in [7I .  

The analyses  of the t r ansve r se  plane 

They a r e  

repeated he re  for c la r i ty  and completeness.  

2. General Method 

The general definition of effective e las t ic  moduli of heterogeneous 

mater ia l s  has  been discussed in [ 81  and [91. 

consistency a shor t  discussion, specific to the problem he re  treated,  

w i l l  now be given. 

F o r  the purpose of self 

In fiber re inforced ma te r i a l s  the ra t io  of length to fiber diameter  

is usually very  large.  Accordingly, f iber end conditions will only be 

considered here  in the St. Venant sense.  Consequently i t  i s  sufficient 

to consider a ve ry  la rge  cylindrical specimen of re inforced mater ia l ,  

with fibers in the generator  direction extending f rom base to base. 

6 



(In reali ty the f ibers  terminate  at random heights. ) The specimen 

is r e f e r r e d  to a Cartesian coordinate system x x x whose x axis 

points in the fiber direction while x x a r e  in the t r ansve r se  plane. 

1 2 3  1 

2 3  

Let the specimen be subjected to one of the boundary conditions 

0 0 

e i j  xj 
u (S) = .i 

To. (S) = (3 0 i jnj  
1 

0 
over  i t s  en t i re  bounding surface S. Here u and To a r e  displacement 

and s t r e s s  vector  components respectively, x a r e  sur face  coordinates 

and n .  the components of the outward normal  to S. 

s c r ip t s  is 1,  2 ,  3 and a repeated subscript indicates summation. 

i i 

j 

The range of sub- 
J 

F o r  boundary condition (2.1) i t  can be shown that the average 

0 
s t r a ins  over  the specimen a r e  c 

s t r e s s e s  a r e  (3 

homogeneous by which is meant that for either one of boundary conditions 

(2. 1) o r  (2 .2 )  s t ra in  and s t r e s s  averages taken over large enough sub-  

and for  ( 2 . 2 )  that the average i j  
0 The specimen is assumed to be macroscopically i j '  

- 
regions of the specimen a r e  the same  f o r  any such subregion. Such a 

subregion wi l l  be r e fe r r ed  to a s  a representat ive volume element (RVE) 

and wi l l  h e r e  be chosen a s  a cylinder whose generators  a r e  in x 

direction and i t s  bases  par t s  of the specimen bases ,  

a r r a y  the R V E  is an hexagonal p r i s m ,  surrounding one central  fiber. 

1 

For  an hexagonal 

Apart  f r o m  a nar row specimen boundary l aye r ,  s t r e s s  and s t ra in  

average  invariance in a RVE is then exactly fulfilled. 

placement of f ibers  the RVE is  taken as a cylinder in 

For  random 

x direction, con- 1 
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taining many fibers and s t r e s s  and s t ra in  average invariance a r e  fulfilled 

in the limit with increasing t r ansve r se  section s ize  of RVE. 

The effective Hooke's l aw  for  the composite is defined a s  

where the overbar  denotes average over R V E ,  which by hypothesis i s  

also the average over the whole specimen. 

elastic moduli whose number is determined by elastic symmetry.  

(2.1) is  prescr ibed the average s t r a ins  a r e  Q 

found. 

4 
a r e  effective The C ijkl 

When 

0 and 0. have to be 
i j  1j 

Conversely when (2 .2 )  is prescr ibed  the average s t r e s s e s  a r e  

known and the average s t r a ins  a r e  sought. 

The definition of effective elastic moduli by ( 2 .  3) i s  physically 

plausible; i t  is, however, not v e r y  useful because,  in o rde r  to find 

averages,  a field solution has  f i r s t  to be found, which in general is a 

hopelessly complex task. 

to define the effective elastic moduli in t e r m s  of s t ra in  energy and to 

bound the s t ra in  energy for s imple applied average s t r e s s  o r  s t ra in  

An equivalent and m o r e  fruitful approach is 

xc 
fields, thus a l so  bounding the C . It can be shown that when either 

ijk; 

(2. 1)  o r  ( 2 . 2 )  a r e  prescr ibed  the s t r a in  energy W s tored  in a RVE is 

given by: 

1 - - (+) 
2 'ij 'ij 

w = -  

Thus, when (2 .  1) is prescr ibed ,  (2 .  3) i s  equivalent to 

(t) For discussion related to such energy formulae s e e  for example,  
Bishop and Hill [ l o ] .  
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l *  0 0  

2 i j k l  ' i j  ' kl wc = - (2 .4)  

and when ( 2 . 2 )  i s  p rescr ibed ,  to 

1 *  0 0 wo: = 2 s ijkl 0 i j  (T k l  (2.5) 

* * 
a r e  the effective elastic compliances associated with C 

i jkl  i jkl '  where S 

Strictly speaking the equivalence of moduli defined by s t ra in  energy o r  

by average s t r e s s  and average s t ra in ,  for  random geometry,  holds 

rigorously only for  averages  taken over the whole specimen, with (2.1) 

o r  (2 .2 )  prescr ibed.  

the l imit ,  for a statist ically homogeneous mater ia l .  

a r r a y  the equivalence i s  r igorous for the RVE used in that case. 

F o r  a la rge  R V E  the equivalence is approached in 

F o r  the hexagonal 

The general  elastic features  of the ma te r i a l  he re  t reated wi l l  

now be discussed. F o r  the hexagonal fiber array the reinforced ma te r i a l  

has  hexagonal symmetry  and i s  thus also t ransverse ly  isotropic (compare ,  

e. g. Love E111 p. 160). F o r  random fiber a r rangement ,  t r ansve r se  

isotropy i s  assumed.  The s t r e s s - s t r a in  relation (2. 3) for a t ransverse ly  

isotropic ma te r i a l  may be written in te rms  of five elastic module in the 

fo rm 
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(2.10) 

(2.11) 

where the usual s ix  by six m a t r i x  notation h a s  been used for  the elastic 

moduli. 

It is possible to select  five independent moduli which a r e  com-  

binations of the above e las t ic  moduli, such that for specified s ta tes  of 

s t r e s s  and s t ra in  only one of these moduli will appear in the s t ra in  

energy function. Thus,  the bounds on s t r a in  energy can be used directly 

to yield bounds on the e las t ic  moduli. The moduli so chosen a r e :  

* 1 * 
= - (C 22 23 2 (2.12) 

* 1 *  * 
- 23) = - (C 22 23 2 (2. 13) 

* * * $e 
= G l = C 4 4  12 = 13 

* 2  
* * 2c 12 - 

E 1 = C  11 * 
22 -t '*23 

* * * 
Here  K and G a r e  a bulk and shear  modulus, 11' 23  23 

and C 

(2. 14) 

(2. 15) 

respectively, governing plane s t r a in  deformation in the x x plane; 

G is a shear  modulus governing shea r  in any plane normal  to the 

2 3  * 
* 

t ransverse x x plane; E is the longitudinal Young's modulus and c 11 2 3  1 

is associated with axial s t r e s s  o r  s t r a in  in x 

deformation i s  prevented by a rigid enclosure. 

direction, while l a t e ra l  
1 

F r o m  these five elastic 

10 



. 
moduli any des i red  elastic constant can be obtained. Important derived 

constants a r e :  

where 

* 
21 

V 
* 

31 
V 

* 
1 

V 
1 
2 
- 1 - E  

* * 
* * 4G 23 23  

E 2 = E 3 =  * 
K 2 3  t #G*c23 

K*23 - qG*23 - * 
2 3  - *  V 

23  qG*23 

( 2 .  16) 

(2.17) 

( 2 .  18) 

* 
Here  V is the Poisson ' s  ra t io  for unaxial s t r e s s  in x direction, 1 * * 

is the t r ansve r se  Young's modulus in the x x 

- the t r ansve r se  Poisson ' s  r a t i o  in the same  plane. 

plane and E 2 = E  3 2 3  
* 

2 3  V 

The var ia t ional  bounding method used for the hexagonal a r r a y  

wi l l  now be outlined. Let all f ibe r s  be surrounded by the la rges t  

possible  non overlapping equal circular cylindrical surfaces .  The 

rad i i  r 

(Fig.  la). 

be denoted by V 

sist ing of a fiber of radius  r and a concentric binder shell of outer 

of these  cylinders are defined by the geometry of the a r r a y  b 

Let the volumes enclosed within these cylindrical sur faces  

The cylinder con- and the remaining volume by V2. 1 

f 

rad ius  r will in the following be r e fe r r ed  to a s  composite cylinder 
b 

11 



2 (Fig. 2) .  

( i t  is immater ia l  whether this condition is real ly  fulfilled as the R V E  is 

a very small  fraction of the specimen). 

Assume that the specimen cylindrical surface is wholly in v 

F o r  a particular state of s t ra in ,  

defining any one of the e las t ic  moduli given above, the associated l inear 

displacement ( 2 .  1) i s  applied throughout V 

of the composite cylinders. 

and thus also to the boundar 2 

If now the boundary value problem for the 

composite cylinder with (2. 1) prescr ibed on i t s  surface is solved, the 

e s  

1 ensuing displacement fields in all composite cylinders which form V 

and the field (2 .  1) in V a r e  an admissible displacement field f o r  the 2 

principle of minimum potential energy for  the whole composite"). Let 

the "strain energy" for this field be denoted by U and the actual s t r a in  - €  

€ 
energy whose density is given by (2 .4 ) ,  by U 

potential energy that 

. It follows f r o m  minimum 

(2. 19) 

and an upper bound for the effective elastic modulus under consideration 

is thus  obtained. 

s t r e s s  field, which gives s t r e s s  vectors  of f o r m  (2.2) is applied through- 

out V 

If the s t r e s s  boundary value problem is solved, the ensuing s t r e s s e s  in 

To obtain a lower bound a n  appropriate homogeneous 

Then (2.2) ac t s  on the boundaries of the composite cylinders. 2 '  

(t) The specimen boundary displacement ( 2 .  1)  is t ransformed to the local 
coordinate systems of the composite cylinders by addition of rigid body 
translations which do not contribute to the s t r a in  energy. 

12 



V 

field for the principle of minimum complementary energy. 

energy" U 

given by (2 .  5) multiplied by the composite volume. 

minimum complementary energy that 

and the homogeneous s t r e s s e s  in V 
1 2 now fo rm an admissible s t r e s s  

The " s t r e s s  

-0 is now calculated while the actual s t r e s s  energy U0 i s  

It follows f rom 

U U  I (2.20) 

which provides an upper bound on an  effective compliance and thus a 

lower bound on an  effective elastic modulus. 

F o r  random arrangement  of fibers the bounding method has  to be 

modified. The fiber d iameters  may  be different but their  r / r  ra t io  i s  
o f  

& I  came. The reinforced specimen is here  subdivided into composite 

cyl inders  exL-nding f rom lower to upper specimen base ,  filling i t s  space 

completely (Fig.  lb).  

one fiber and the volume ratio of fiber to binder is the same  in all 

composite cylinders. In this case  either (2 .  1) o r  ( 2 . 2 )  i s  applied to 

all the sur faces  of the composite cylinders, and the displacement o r  

s t r e s s  fields in their  in te r iors  form the admissible fields. 

c r o s s  sections of the composite cylinders a r e  of i r r egu la r  shape the 

in te r ior  fields can not be found in general. In the present  work the 

outer cylindrical sur faces  a r e  approximated by c i rcu lar  cyl inders ,  

concentric with the f ibers ,  so that binder volume i s  preserved.  

the composite cylinder solution needed fo r  the hexagonal a r ray  becomes 

immediately applicable in the random case. 

la t ter  c a s e  a r e  immediately obtained from the f o r m e r  fo r  vanishing V 

Each composite cylinder contains one and only 

Since the 

Thus,  

In fact the resu l t s  for the 

2' 



* 
2.3 3. The Plane Strain Bulk Modulus K 

The s t ra in  sys tem associated with (2 .  1) is chosen h e r e  as the 

plane s t ra in  sys tem 

0 0 = €033 = € 22 

while all other s t ra in  components 

f o r m  

( 3 . 1 )  

vanish, whence ( 2 . 1 )  assumes  the 

0 0 0 0 

3 u o = o ;  u = E x  * u  = q x  1 2 2 '  3 ' (3 .2)  

From (3 .  l ) ,  ( 2 . 6 - 1 1 )  and (2 .  12) ,  the s t ra in  energy density ( 2 . 4 )  

simplif i e s to 

2 
C0 

* 
W = 2K 2 3  ( 3 . 3 )  

Consider f i r s t  the hexagonal a r r ay .  

applied throughout V 

cylinders. 

The displacement field ( 3 . 2 )  is 

and thus a l so  to the boundary of the composite 

For  any such cyl inder ,  in  cylindrical coordinates (F ig .  2 )  

2 

The displacement boundary value problem for the composite cylinder 

thus reduces to an  elementary axially symmetr ic  plane s t ra in  problem. 

The general  solution for  radial  displacement ur  and rad ia l  s t r e s s  u 

f o r  such a problem may  be written in the form 

r r  

B u = A r t -  
r r 

B 

r 
Urr  = 2-EA - 2 c 7  

14 



I 
t 

(compare  e. g. Love E1 11 ). Here  i s  the plane s t ra in  bulk modulus 

given by 

where is a Lam& modulus and G the shear modulus. A and B a r e  

a r b i t r a r y  constants. Two different solutions of type ( 3 . 5 ) ,  ( 3 . 6 )  hold 

rb' for f iber region r 5 r 2; rf and binder region r 5 r * 
0 f 

respect ively,  with the appropriate  elastic moduli. In the following 

quantities defined fo r  fiber region w i l l  be given subscr ipts  o r  supe r -  

s c r ip t s  f and for binder region, subscripts o r  superscr ip ts  b. There  

a r e  altogether four a r b i t r a r y  constants for which four boundary conditions 

a r e  available. 

ones a r e  provided by u and 0 continuity a t  the interface r = r and 
r r r  f 

the vanishing of 0 a t  the void surface r = r . F o r  the present  

purpose only the rad ia l  s t r e s s  at r = r is needed which is eas i ly  

found to be 

One of these is the second of ( 3 .  4),  and three  additional 

rr  0 

b 

where 

2 
2 2 2 a 

d(1 -a  ) (1 t2VbB ) t ( l t - )  (1 - 6  )2Vb 
v, I 

m, = 

Here  
f 

b 

r r 

r 
a = -  0 .  , B = -  

rf  
( 3 . 9 )  
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- 
Kf lj = -  - 

K 
b 

(3.10) 

and v and V a r e  the Poisson 's  ra t ios  of fiber and binder ma te r i a l s ,  f b 

respectively. 

The s t ra in  energy s tored in a composite cylinder is given in the 

present c a s e  by 

1 b U' = - -ob ( r  ) u ( r  2 n r  1 
C 2 r r b  r b  b 

(3.11) 

where 1 is the length of the cylinder. Introducing u f r o m  (3. 4) and 

ob 

r 

given by (3. 7) into ( 3 .  11) one obtains 
r r  

2 
0 - 

Uc = 2 K b y f  Vc 
C 

where 

2 
V = n r  1 

C b 

(3.12) 

(3. 13) 

is the gross volume of the composite cylinder. 

- €  
U 

The "strain energy" 

stored in the ent i re  composite is now given by 

2 2 
- €  0 0 u = 2X m c v1 t 2Xbc v2 

b k  
(3. 14) 

where V 

and V 

is the sum of the g ross  volumes of all composite cylinders 
1 

the remaining volume. F r o m  (3. 3) the actual s t r a in  energy is 2 

2 * 
Uc = 2K 2 3  co V (3. 15) 

where V = V t V is the total volume. Substituting (3. 14) and (3. 15) 

into inequality (2 .  19) the following upper bound K 

1 2  * L 
is obtained for K 23 2: 

16 



where v a n d v  a re  

and the subscr ipt  (h)  

the hexagonal a r r a y  

1 2 

n v = -  
2 6  

1 
v = 1 - v  

2 

- 
Kb(%V1 + v2) (3 .  16) 

the fractional volumes of V and V relative to V 

denotes hexagonal a r ray .  F r o m  the geometry of 

1 2 

Ly 

= 0.907 ( 3 .  17) 

(3 .  18) 

F o r  lower bound construction the s t r e s s  sys tem associated with 

( 2 . 2 )  is chosen a s  

0 0 0 = u  22 = 33 ( 3 .  19) 

0 A s t r e s s  0 i s  needed to prevent Q Its  actual  magnitude i s  

immater ia l  for the present  analysis  since i t  does no work. 

11 11' 

The 

remaining s t r e s s  components vanish. The s t r e s s  sys tem ( 3 . 2 7 )  is 

applied throughout V whence on the composite cyl inders  a constant 

rad ia l  s t r e s s  0 i s  produced. Composite cylinder analysis  can now 

2'  
0 

be c a r r i e d  out by the same  method as before. 

follows by calculation of the " s t r e s s  energy" 5' associated with the 

Bound construction 
e 

present  admissible  s t r e s s  sys tem and use  of inequality (2.20). F r o m  

( 3 .  1 9 ) ,  (2.6-1 1) and (2.12), the t rue  energy density now has  the fo rm - 
( 3 . 2 0 )  

17 



The lower bound is found to be 

(3.21) 
I 

2 - t v  m k 

where m v and v a r e  given by (3.8),  (3. 17) and (3. 18) respectively. k' 1 2 

If the fractional volume of the composite taken up by g ross  fiber volume 

(including voids) is denoted by v 
2 

then by an  elementary calculation B t 

in (3 .  8) is given by 

t V 2 b = -  
v1 

(3.22) 

2 
t' and thus f rom (3.17) f l  i s  he re  given by 1.103 v 

F o r  the case  of random fiber a r rangement  the general procedure 

has  been descr ibed above. It i s  not difficult to rea l ize  that the procedure 

of bound construction is entirely the same  a s  for the hexagonal array 

except that V now disappears .  Consequently the bounds a r e  obtained 2 

by setting v equal to ze ro  and v 2 1 equal to unity in (3. 16) and (3.21),  

whence these bounds coincide. 

Accordingly 

where the subscr ipt  ( r )  denotes random a r ray .  In the present  c a s e ,  

however 

t B2 = v 

so  (3.23) can be rewri t ten in the form 

18 
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2 
Q 2VbVb 

2 K '  = Kb 
2 CY 2 3( r)  

d ( 1 - a  )Vb t (1 t  -) (Vt t 2 V b )  
Vf 

where 

= 1 - v  Vb t 

(3.25) 

(3.26) 

i s  the fractional volume of binder material. 

While the bounds (3. 16) and (3.21) a r e  exact r e su l t s ,  the 

expression (3.25) is in general  approximate. 

a v e r y  special  ca se  when (3.25) becomes exact in the limit. 

a cylindrical specimen of reinforced mater ia l  which consis ts  of c i rcu lar  

composite cyl inders  of varying s izes ,  of total volume V and remaining 

binder volume V In all composite cylinders the ra t ios  r : r r 

a r e  the same. The volume V 2 

composite cyl inders  of smal le r  and smaller  c r o s s  sections. Bound 

expressions for  this ca se  a r e  exactly the same  a s  f o r  the hexagonal 

a r r ay .  Since v 

des i red  by the filling process ,  the bounds will in the limit converge 

to (3.25). 

that (3.25) wi l l  be a bet ter  approximation f o r  f ibe r s  of varying c r o s s  

sections,  than for equal f ibers.  The present discussion also applies 

to subsequent r e su l t s  for elastic moduli of the random a r ray .  

Resul t s  for  solid f ibers  a r e  easily obtained by setting Q = 0 

There  ex is t s ,  however, 

Consider 

1' 

2' o f '  b 

can be filled out progressively by such 

in (3.16) and (3.21) can thus be made as sma l l  as 2 

On the bas i s  of this ra ther  art if icial  case  i t  is to be expected 

in all of the preceding results.  
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* 
23 4. The Shear  Modulus G 

F o r  upper bound construction the displacements (2.1) a r e  chosen a s  

u 1 = o ; u o = - y y 3 ;  2 2 1 0  u o = - y x 2  3 2 1 0  0 

and a r e  thus arssociated with a pure shear  s t ra in  

YO ' 23 = 32 - 2  
1 

O - -  0 

(4.1) 

(4 .2)  

and  a l l  other s t ra in  components vanish. 

F o r  lower bound construction the s t r e s s  vec tors  (2 .2 )  a r e  

chosen as 

0 

2 
= Ton To3 = 7 n 

3 '  To1 = 0 ; To2 (4.3) 

0 
The stress vectors  (4.2) a r e  equivalent to  a pure shear  of magnitude 7 

i n  the t r ansve r se  plane. The bounding method is the same  a s  for  K 

F o r  (4. 1)  prescr ibed the macroscopic  s t r a in  energy density (2.4) is 

* 
2 3' 

easily found to be 

2 
YO 

f l *  
2 23 

w = -  

while for (4. 3) prescr ibed  (2. 5) reduces  to 

2 
U To 

* w =  
2G 23 

(4.4) 

(4 .5)  

For upper bound derivation (4. 1) is applied throughout V and 2 

for lower bound derivation (4. 3) is used. 

in the present  case  is however much m o r e  complicated. 

Composite cylinder analysis  

Solutions f o r  

20 



the boundary conditions he re  applied have been car r ied  out by the method 

of plane harmonics. 

a r e  given by the following expressions.  

on the basis of the previously used approximation 

The method is outlined in section 8and the resu l t s  

For random fiber a r rangement ,  

2 (1-u  ) 
(') = Gb [ l  - V A ' I  

t 4  1 - 2Vb 
G23 (1) (4.6) 

(4.7) 

where A' and X u  have to be found from the sys tems of l inear equations 

(10-17) and (19-20), (12-17) respectively, given in section 8. 

bounds (4. 6-7) do not in general  coincide. 

4 4 

The 

F o r  the hexagonal a r r a y  the bounds a r e  given by 

2(1-u ) 
v xl' 1 

t 4  
(+) 

= Gb [ 1  - 1 - 2 u  
b 

G2 3( h) 

2(1-v ) 
v x- 'u  1 = Gb / [ 1  t 1 -2ub t 4  

( - 1  
G2 3( h) 

(4.8) 

(4.9) 

- - ' €  where A and a r e  given by the same sys tems of equations with 

v replaced by - (compare  (3.22)). 

4 4 
Vt 

1 t V 

The necessa ry  modifications for  the c a s e  of solid f ibers  a r e  

stated in section 8. 

2 1  



* 
5. The Shear Modulus G 

The s t r a in  sys tem associated with (2. 1) is chosen as a pure shear  

in x1x2 direct ions 

0 1 0  - = - y  
c'12 - € 2 1  2 (5.1) 

with all  other s t r a ins  vanish. With addition of a rigid body rotation d i s -  

placements (2. 1) can then be written in the fo rm 

0 0 0 
u o =  0 ;  u = y x l  ; u3 = o  

1 2 (5.2) 

Using (5. l ) ,  (2.6-11) and (2. 14), the s t ra in  energy density (2.4) a s sumes  

the form 

2 1 *  
2 1 

W ' = - G  yo (5. 3)  

The s t r e s s e s  associated with (2 .2 )  a r e  chosen analogously a s  a 

pure shear  in x x directions: 1 2  

(5.4) 

and the remaining s t r e s s  components vanish. 

(2.5) then a s s u m e s  the f o r m  

The s t r e s s  energy density 

2 

(5.5) 

F o r  upper bound construction, for the hexagonal a r r a y ,  (5.2) is 

applied throughout V and thus to the composite cylinder sur faces .  

cylindrical coordinates r e f e r r e d  to composite cylinder axis,  (5.2) 

In 2 

t ransform to the following displacement boundary conditions 
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(5.6) 
b 0 b 0 b 
r Z 

u = y z c o s  8 ;  u e = - y  z s i n e ;  u = 0 

( r=r  ) 
b 

F o r  lower bound construction (5.6) is applied throughout V 

the sur faces  of the composite cylinders the following s t r e s s  boundary 

whence on 
2 '  

conditions a r e  obtained in cylindrical coordinates 

The other boundary conditions to be satisfied in both cases  a r e  displace- 

ment  and s t r e s s  continuity a t  fiber-binder interface r=r  and vanishing 

of s t r e s s e s  at void surface r = I  . To the au thors '  knowledge a solution 

to the boundary value problems described above is not to be found in the 

l i terature.  The method 

f 

0 

A closed fo rm solution has  been h e r e  derived. 

is outlined in section 9. Here  only those quantities required for s t ra in  

energy calculation will be given. 

( 5 . 6 )  the boundary s t r e s s e s  a t  r = r  

F o r  displacement boundary conditions 

are: b 

0 b = G m y COS 8 (5.8) 
'r z b G  = o ;  err = 0 ; O r e  

b b 

where 

2 q(1-a ) (1+B2)  + (l+CY2) ( 1 - B 2 )  
m =  2 2 2 2 

rl(1-a ) (1 -B  ) + (1ta ) ( 1 4  ) 
( 5 . 9 )  

Here  

Gf q = -  
Gb 

2 3  

( 5 . 1 0 )  



and CY and f l  a r e  given by (3.9). The s t ra in  energy s tored in a composite 

cylinder is calculable in t e r m s  of (5.6) and (5.8)  and is given by 

2 1 
u C.  = 2 ~ m  b G  y o v  C 

(5.11) 

where V 

surface displacements a t  r = a r e  found to  be: 

is given by (3. 13). F o r  s t r e s s  boundary conditions (5. 7) the 
C 

'b 

b To b To  z s i n 8 ;  u b = O  
r GbmG GbmG 

z c o s  e ;  u = - - u =  
Z 

(5.12) 

The s t ra in  energy s tored in a composite cylinder is then given by 

2 7 

C 
V 0 u =  

2G bm G 
C 

(5. 13) 

All the informauvn necessa ry  for bound construction is now available 

and the method is exactly the one employed above. F o r  the hexagonal 

a r r a y  the resu l t s  a r e  

(5. 14) 

(5. 15) 

2 t v  - 
G 

m 

2 where v and v 
1 2 a r e  given by (3. 17) and (3. 18),  respect ively and fl  

in (5. 9 )  is given by (3.22). F o r  the random a r r a y ,  on the basis  of the 

previously used approximation, the bounds coincide and a r e  both given by 
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b 
where again v is the fractional volume of gross  fiber volume and v 

the fractional volume of binder mater ia l  given by (3.26). Fo r  solid 

f ibers ,  a = 0 i n  (5.9) and (5.14-16). 

t 

* * 
1 

6. Longitudinal Young's Modulus E and Poisson 's  Ratio Y 
1 

The cylindrical  specimen i s  subjected to uniaxial s t ra in  in fiber 

direction. Accordingly the s t ra in  system associated with (2. 1) is 

chosen as: 

- /.No - €33  - - , €22 
0 - 0 0 0 .  = E  11 

0 0 0 = €23 = €31 = o  €12 

The displacements (2. 1) a r e  then given by 

The la te ra l  surface of the specimen is not loaded, thus on this boundary 

0 0 
T2 = T3 = o  (6.3) 

The constant p in (6.1) and (6 .2 )  is dependent on (6.3) and w i l l  be 

evaluated below. 

he re  to 

The macroscopic strain energy density (2.4) reduces 

2 
W = F E 1 €  1 * o  

* 
where E is given by (2.  15). 1 

(6.4) 
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Consider first the case  of the random a r ray .  The  displacements 

( 6 . 2 )  a r e  applied to the boundaries of the composite cylinders. 

boundary conditions of the axially symmetr ic  composite cylinder problem 

a r e  then given in cylindrical  coordinates by 

The 

0 b 0 , u = € z  
b 

u = - p Q  r ' r Z 

( r=r  b ) (z=O, 1) 

(6.5) 

A suitable general  displacement solution is 

B 
r r r u = A  + -  

0 
u = € z  
Z 

Here (6 .6)  has  different constants in fiber and binder regions and (6.7) 

is the same throughout both regions. 

A , B , A and B to be determined. The four necessa ry  boundary 

conditions a r e  the f i r s t  of (6. 5) ,  u and (J continuity a t  r =  r and 

vanishing of (J a t  r=r . Fur thermore  1 is evaluated by making 

'r r b' 

s t r e s s  0 is needed, which is found to be: 

There  a r e  thus four constants 

f f b  b 

r r r  f 

r r  0 

vanish a t  r=r  F o r  the present  purpose only the average axial 
b 

- 
zz 

- 
E c0 E b  

= m  
%Z 

where 

E ( D  -D3F1) t E (D  - D4Fz) =f b 1  f 2  

(6.9) 
- D3) + Ef(Dz -D4) 

m = (V - + v b )  E ( D  
Eb b 1  

E 

Here 
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2 
v, L 

2 D3 = 
1 -a 

2 Vt D, = 2 Vb - 
Vb 

v v E  t v v  E 

v v E t v b E b  
b f f  f b b  

f f f  
- 

=1 - 

Vf 

'b 
F2 = - F1 

(6.10) 

and v is the fractional volume of gross f ibers ,  v t b 

and v 

(a is defined by (3.9)).  

is given by (3.26) 

2 = (1  -a ) vt is the fractional volume of net fiber mater ia l  
f 

Since 0 was made to vanish at r = r  the s t ra in  energy s tored 
r r  b 

in the composite cylinder i s  simply 

1 02 u ' = - ~ E  c v 
C 2 E b  C 

(6. 11) 

where (6.8) has  been used. The displacement fields in all composite 

cylinders are now an  admissible field. Using (2. 19) a s  previously with 

(6. 11) and (6. 4) adjusted to the whole specimen volume, m E is 

* 
obtained as an  upper bound for E 

E b  

1 '  

F o r  lower bound construction the specimen is subjected to 

0 0 = u  11 
(6.12) 

on i t ' s  faces  and (6. 3) on the la te ra l  surface. The macroscopic s t r e s s  

energy density (2.5)  is now 

1 

(6. 13) 
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The composite cylinder boundary conditions a r e  now 

(6. 14) 

Because of St. Venant's principle, at sufficient distance 

ends  the solution is the s a m e  as the previous one with 

n 

f r o m  the fiber 

(6. 15) 

Using (6. 15) in (6. 11) the s t r e s s  energy s tored in the composite cylinder 

becomes 

02 

C 
V UU = U 

C 2mEEb 

T h e  energy discrepancy due to  the St. Venant approximation is 

insignificant because of the ve ry  large length to diameter  ra t io  of the 

composite cylinder. 

admissible. 

(2.20), mE Eb a l so  becomes a lower bound for  E 

of approximation of the random f iber  a r r a y  model 

The s t r e s s e s  in all composite cylinders a r e  now 

Using (6. 13) and (6. 16) adjusted to specimen volume in 

* 
Thus to the o r d e r  

1 '  

* 
(6. 17) 

Unfortunately (6. 17)  i s  a v e r y  unwieldy expression. 

of (6 .9)  shows that the fraction on the right side is different f r o m  unity 

However, inspection 

only because F # F (see  last eq. (6. 10). F o r  most  pract ical  
1 2 

purposes  the fraction seems to be close to unity and i t  can thus be 

concluded that the "law of mixtures"  
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* 
VbBb E = vfEf (6.  17a) 

i s  a good approximation to (6. 17). For  v = v (6. 17a) is exactly equal 

to (6. 17). 

f b  

In fact for equal Poisson 's  ratios (6. 17a) i s  an exact resu l t  

f o r  any macropcopically homogeneous fiber a r ray  regard less  of 

t r ansve r se  section geometry.  

It i s  evident f rom the f i r s t  th ree  strains in (6. 1) that i s  the 

* 
Since for the random a r r a y  the bounds coincided 1 '  Poisson ' s  ra t io  v 

the value of p determined to make r~ vanish on the composite cylinder 

* 
boundary gives V to the order  of approximation of (6. 17). The resu l t  

i s  

r r  

1 

v f E f L 1  t v E L V 

V E L  + V E L  
f f 3  b b 2  

* b b 2 b  
lJ + r )  = 

where 

2 L = 2 v  (1  - v  b) Vt t V b ( l t  V ) v  

L = v  [ ( l + v ) a  t 1 - v  - 2 v 2  1 

1 f b b  

2 
2 t  f f f 

(6. 18) 

(6.  19) 

2 L = 2(1 - L J  ) v  t (1  t V b ) V b  
3 b t  

and the r e s t  of the notation i s  identical to the one used in (6.9-10). 

Note that for v - V (6.  18) i s  a l so  equal to t, = V 

the values of the phase Young's moduli, 

r ega rd le s s  of f '  b -  f '  b 

F o r  hexagonal a r r a y s  it can be shown by the same  method as 

* 
previously used that the upper and lower bounds for E a r e  given by 

1 
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Eb 
V 

+ t v  2 
E m 

Here 

1 - V  - 2Vb b 

(6.20) 

(6.2.1) 

(6.22) 

* 
are given by ( 3 .  17-18). The pr ime on m and V in and v l Y  v2 

E l ( r )  

(6.20-22) indicates ;hat these quantities have to be computed by replace-  

ment of v and v by - and - respectively,  and of v by 

. F o r  v = v the upper bound (6.20) reduces to (6.17a) and 1 -  - 

Vf V 
t 

1 
b 

1 V t f V 
V 

t 
V.  f b * 1 

is an exact r e su l t  fo r  E of the hexagonal a r r a y .  It is believed that for 
1 * 

any Poisson 's  ra t ios  E 

to the lower one. 

is considerably c lose r  to the upper bound than 1 

* 
1 For  the Poisson 's  ra t io  V of the hexagonal a r r a y  the situation 

is m o r e  complicated and bounds cannot be direct ly  obtained. 

11' case V 

using (2 .  16). Bounds for  C will be given below. Because of this 

indirect bounding procedure the bounds on v 

the bounds obtained by d i r ec t  methods and they may be of little practical  

F o r  this 

* * * * 
can be bounded by use of bounds on K 2 3 y  E a n d C  

1 * 
11 * 

a r e  further apa r t  then 1 

value. 
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* 
7. The Modulus C 11 

* 
The modulus C can be t reated by assigning to the specimen 

11 a 

uniform macroscopic  s t r e s s  o r  s t r a in  in x direction and preventing 1 
0 l a t e ra l  deformation in the x x plane b y a  rigid enclosure. For  < = < 

2 3  11 

the energy density (2.4) reduces in this case to 

2 
wQ = - 2 1 c*ll Q0 

while for 0 - the energy density (2. 5) reduces to 
11 - a. 

2 
0 

W a  = a * 
2cl l  

(7.1) 

(7.2) 

* 
1' 

The bounding procedure i s  completely analogous to the one used for E 

* 
F o r  the random a r r a y  C can be immediately written down in the form 

11 

(7. 3)  

* 
is given by (6.9)  and 

l ( r )  
which follows directly f rom (2. 16). Here E 

* 
by (6.20) and K by (3.25). 

l ( r )  23( r )  
(6. 17), v *  

F o r  the hexagonal a r r a y  the bounds a r e  given by 

E (1-U ) 
V (7.4) 

' *  b b c* (+)  = c v t  ( 1  t v  ) ( l - 2 v b )  2 b 
1 l (h )  l l ( r )  1 

(7 .5)  
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Here v and v a r e  given by ( 3 .  17-18), q is given by the expression 1 2 

2 q = 1 - 4u n t 2(1 - ~ , ) n  b 

where 

The pr imes  on the elast ic  constants in ( 7 . 4 - 6 )  mean that they a r e  com-  

tl a n d v  as puted f rom ( 3 . 2 5 ) ,  (6 .9)  and (6 .  18) with modified v t '  Vf' 

listed af ter  ( 6 . 2 2 ) .  

2 
b 

8. Shear  of Composite Cylinder in x x Plane  2 3- 

A conveni:nt fo rm of solution is in t e r m s  of plane harmonics  

(compare Love [ l l ] ,  p. 270.  Goodier [ 121  1. Plane  harmonics  a r e  

homogeneous polynomials which satisfy the two dimensional Laplace 

equation. F o r  the present  purpose only the following plane harmonics  

a re  needed: 

x x  
( 8 . 2 )  

2 3  
4 

r 
d - 2  = - 

The displacement vector is given in t e r m s  of these by 

1 A2 2 4 3  2 4  
u = A u  t -u t A r  u t A r  u 1 2 3 f  4 ( 8 . 3 )  
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where 

1 
u = Vd2 (8 .4)  

4 2 
u = r  Vd 4- d - , r  -2  (8.7) 

where v is the gradient operator  and A 

nondimensional constants, The parameters  o! and o! a r e  defined by 

A2, Aj,  A a r e  a r b i t r a r y  
1'  4 

2 -2 

2( 3-4v)  = -  
2 3-2V 

2 ( 3 - 4 V )  
o ! =  

-2  1 - 2  v ( 8 . 9 )  

where V i s  the Poisson ' s  ratio. F r o m  the displacements,  s t ra ins  can 

be calculated by differentiation. The s t r e s ses  a r e  then found by Hooke's 

l aw  and s t r e s s  vec tors  f rom T .  = a..n.. The n. a r e  he re  the components 

of a unit normal  to a c i rcu lar  cylindrical sur face  and a r e  given by 

n = - , i = 2 ,  3. 

binder region r s r s r  and the other for  f iber region s r s r  In 

each of these the appropriate  elastic constants of the ma te r i a l  have to 

1 1J  J 1 

X. 
1 

i r  There  a r e  two such displacement solutions, one for 

0 f rf b' 

be used. The re  a r e  thus eight a rb i t r a ry  constants to be determined,  

four of these for binder region a r e  denoted by A and the remaining 

four  f o r  fiber region by B k = l ,  2 ,  3,  4. In addition to the boundary 

conditions on r=rb,  given by (4. 1) or (e  3) s t r e s s  vector and displace-  

k 

k;  
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ment continuity at fiber-binder interface r = r and vanishing of stress- f 

vectors at void surface r =-r , must  be satisfied. 

ditions provide exactly eight l inear equations f o r  the eight unknowns. 

These  boundary con- 
0 

F o r  boundary conditions (4.1) these equations are: 

- €  -1 -€ 2 - €  
t v  A t v A ' = l  

A1 Vt A2 t 3  t 4  

3-4Vb 
V t -€ 

3-2vb t 3 1-2v 
-1 -€ 2 - €  -- v A 2 - 2 v t A  t-  A 4  = 0 

b 

(8.10) 

(8.11) 

- 6  - - E  - €  - €  - €  - E  A:tx; t A 3  + A 4  - B 1  - B 2  - B 3 - B 4 = 0  (8.12) 

3-4v 3 -4v 

f .  

b - €  - €  1 - €  f - €  -- 3 - 2 ~ ~  A 2  - 2 A  3 +TA 4 ' 3-2v B 3 + 2 B F  - -  

(8.13) 

- €  - <  3r) - €  
B t 3qB3 -€ 3 - €  - €  1 - e  A 2  - 3A 

f -  1-2v A 4  - T B 1  - 3 7  
b 

- €  -- r) B 4  = 0 1 -2vf (8.14) 

- €  1 - €  - €  77 B 4  - €  = 0 ?/ - c 
t 2A3 -- t -  

1 
* 

1-2v A 4 3 - 2 ~ ~  
b 

3-2vb 

(8. 15) 
-2 B 4  - €  = 0 

-2 
- €  - €  

2 

3 - 2Vf 
CY -- B2 t 2ar B 4  = O  

- E  - 2 c 2 c  
where K c  k ,  B k - -  o A k ' -  o B k  

Y Y 

(8. 16) 

(8.17) 

I and n = -  
Gb 

(8.18) 
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is given by the first (3.9) and the superscript  Q denotes displacement 

boundary value problem. 

F o r  boundary conditions ( 4 . 3 )  the solution i s  analogous. Equs. 

(8.10) and (8.11) have to be replaced by 
1 7  

2 -u t -U 
v i1  x; - 3v A t- A = 1 (8.19) 

-U 3 
A 1  + 3 - 2 v b  t 3 L2Vb 

V 

p = o  (8.20) 
-1 -u 2 -a v A + 2 v t A  -- 1 -- 

3-2vb t 2 3 1-2v, 4 

2Gb a - B and equs. (8.12-17) remain  the same. A k s  T o  k 
-a -a - 2Gb u 

Here  Ak ,  B - - 
To  

The constants now have the  superscr ipts  o t o  denote s t r e s s  boundary 

value problem. 

The composite cylinder s t ra in  energy can in each c a s e  be cal-  

In each culated f r o m  the boundary displacements and s t r e s s  vectors.  

c a s e  the s t ra in  energy is expressible in t e r m s  of the constant 

The bounds ( 4 . 6 - 9 )  then follow immediately. 

only. 4 

F o r  solid f ibers  the solutions have t o  be modified. In this  c a s e  

the solution for  the f iber  region has  no singular part  at r = 0. 

the constants and vanish and eqs. (8. 16) and (8. 17) have to  be 

deleted. 

Accordingly 

3 4 

The expressions for  the bounds remain  unchanged. 

9. Shear of Composite Cylinder in x x Plane  1 2  

The boundary value problems formulated in section 5 can be solved 

in t e r m s  of displacement fields for which the volume dilation vanishes. 

In this  c a s e  the Cartesian equations of elasticity reduce to  
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v 2 u  i = o  (9.1) 

where i = 1, 2, 3 and # is the th ree  dimensional Laplacian. F o r  the 

present purpose the following simple displacement solution in cylindrical 

coordinates is sufficient 

B 
u 1 z  = u = ( A r t - )  r cos 8 (9.2) 

u = c  z c o s  8 ( 9 . 3 )  r 

u = -C z s i n 8  (9.4) 8 

where A, B and C a r e  a rb i t r a ry  constants. 

with these solutions are 

The stresses associated 

U = G ( A t C - -  ) cos 8 r z  2 r 
(9.5) 

(9.6) 

(9.7) 

B 

r 
u = -G(A t C t -2 ) s in  8 8 Z  

0 = o  = u  = o  = e  
r r  8 8  zz re  

There are two such solutions, one fo r  binder and one f o r  fiber region. 

The boundary conditions t o  be satisfied are either (5.6) o r  (5.8) on 

r = r displacement and stress continuity at r = r and zero stresses 
b’ f 

on r = r . 
constants a r e  uniquely determined. 

cylinder, conditions are only satisfied in the St. Venant sense. 

the cylinder is very long this is of consequence. 

the surface s t r e s s e s  are  given by (5.8) where the f i r s t  two of (5.8) follow 

f rdm ( 9 .  7). 

by (5. 12). 

of a rigid body rotation of t he  composite cylinder. 

A l l  boundary conditions can  be satisfied and the unknown 

On the terminal  sections of the 

0 

Since 

F o r  (5.6) prescr ibed 

F o r  (5. 7) prescr ibed the surface displacements a r e  given 

Note that the last of (5. 12) is a consequence of the elimination 
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10. Numerical Results 

The nature of the resul ts  is indicated by the curves of figs. 3-7 

in which the effective e las t ic  constants of g l a s s  f iber  reinforced plastics 

a r e  plotted as a function of v 

Resul ts  a r e  presented for  a = 0, solid fibers,  and f o r  a = 0.8, hollow 

f ibe r s  f o r  which the inner radius is 80% of the outer radius. 

the gross  directional volume of fibers.  t '  

The com- 

putations a r e  all for  random a r r a y s ,  except fo r  the case  of the shear  

modulus G:: 

seen f r o m  fig. 3,  that although the f ibers  are relatively ineffective in 

where the hexagonal bounds are also presented. It can  be 
1' 

the t r a n s v e r s e  direction as compared t o  the longitudinal direction, the 

modulus, E2, is still significantly higher than the modulus of the binder 

material fo r  practical  f iber volume fractions. 

shown in  fig. 4 indicates that for  solid f ibers  the effective Poisson rat io  

:: 

* 
23 

The variation of v 

is l a r g e r  than that of either constituent. F o r  hollow f ibers ,  values 

significantly lower than that of either constituent are indicated. As 

shown in  fig. 5 the hexagonal a r r a y  bounds contain the random a r r a y  

bounds which h e r e  coincide. The variations of E with v shown i n  

fig. 6, a r e  practically l inear  and are given with good accuracy by the 

"law of mixtures ' '  (6. 17a). Also the longitudinal Poissons ratio, v , 

appears  to  be well approximated by the "law of mixture" result. 

* 
1 t' 

* 

A second parametr ic  study indicates the interaction of fiber 

geometry and propert ies  upon composite properties.  Fig. 8 shows the 

t r a n s v e r s e  e las t ic  modulus fo r  hollow fiber composites, of fixed binder 

volume fraction, as a fraction of the fiber radius  ratio, a. The bounds 

3 7  



a re  shown for two values of Poisson 's  ra t io  of the fiber material .  

seen that this parameter  is of importance fo r  large fiber radius ra t io  

values. 

effective Poisson's ratio, v 2 3 .  

to both geometry and individual Poisson ra t io  values. 

It is 

A similar  comparison is made in fig. 9 for the t r ansve r se  

::< 
This quantity is  extremely sensitive 

An interesting sidelight is the r e su l t  for equal fiber and binder 

properties;  that is a ma te r i a l  with holes. 

such a ma te r i a l  a r e  shown in figs. 10 and 11. 

Transverse  propert ies  for 

F o r  a given geometry the effect of mechanical properties is 

studied by fixing the ma t r ix  propert ies  and varying the Young's modulus 

of the fiber. The r e su l t s  for three principal moduli a r e  shown in figs. 

12-14. 

with the fiber modulus. 

verse  Young's modulus increase rapidly for low values of fiber modulus 

and then level off and approach the value for rigid inclusions. At high 

values of fiber modulus a change in  the binder modulus has a far more 

significant effect upon C':: and E". than a change in fiber modulus. This 

is shown more  clearly in fig. 15 where the reference properties for 

glass reinforced plastic a r e  perturbed and the effect on E'" is indicated. 

As expected, the longitudinal modulus, El, i nc reases  l inearly 

The longitudinal shear  modulus and the t r ans -  

J. 

1 2 

4, 

2 

It would be of g rea t  importance to compare the present theoretical  

resul ts  with experimental  findings. 

experimental resul ts  a r e  available only for  EO'* 

very well with the l a w  of mixtures.  

To the author 's  knowledge published 

.I< 

These ag ree  generally 
1' 
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11. Conclusions 

Results fo r  the e las t ic  moduli of fiber reinforced ma te r i a l  have 

been h e r e  derived for hexagonal fiber a r r a y s  of equal c r o s s  sectionp and 

for random a r r a y s  of f ibers  whose diameters may be unequal. 

not 

material .  

for the insignificant effect of non exact fulfillment of f iber end conditions), 

no r e a l  ma te r i a l  satisfies such stringent symmetry conditions. 

other hand the random a r r a y  analysis,  which is based on a model which 

is much closer  to reali ty,  is not rigorous because of the geometric 

approximation of i r regular  shapes by circles. 

these r e su l t s  become exact i n  the l imit  ( s ee  discussion a t  end of section 

3) s e e m s  to be of theoretical interest  only. 

It is 

obvious which of the r e su l t s  apply best to a r e a l  fiber reinforced 

While for hexagonal a r r a y s  the resul ts  a r e  r igorous (except 

On the 

The special  case when 

However, the random ar ray  results a r e  much to be p re fe r r ed  

because of t he i r  much s impler  f o r m  and the coincidence of the bounds, 

except f o r  G It should be noted that the distance between the 

hexagonal a r r a y  bounds can  become quite appreciable f o r  elevated 

rat ios  of f iber  t o  binder elastic moduli. The advantage of the random 

a r r a y  r e su l t s  is even m o r e  predominant when it becomes necessa ry  t o  

der ive r e su l t s  fo r  the other effective elastic moduli (such as (2.16-18) 

in terms of the expressions h e r e  given. F o r  such c a s e s  the hexagonal 

a r r a y  bounds may become v e r y  far apart and thus of little value. The 

c a s e  of u discussed i n  section 6 is a good example. 

* 
23(r)* 

* 
1 
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Finally, it should be inquired whether the present  models of a 

fiber reinforced mater ia l  include sufficient information for  unique de- 

termination of i t ' s  effective elastic moduli. 

certainly uniquely determinate  in this  respec t  because of i ts  periodic 

geometry. Hobever ,  for a random a r r a y  it is to  be expected that the 

statistical details  (cor re la t ion  functions) of f iber arrangement  will 

enter into the results.  The present  method avoids this  problem by 

use of the geometr ical  approximation involved in  the random a r r a y  

model, and thus gives one approximate answer for  different statist ical  

arrangements  of f ibers.  

The hexagonal a r r a y  is 
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B. ORIENTED VOID MATERIALS 

1. Introduction 

The study of oriented voids serves  a double purpose. The first 

is t o  determine whether by the judicious removal of material the effective 

density may be reduced with little or no reduction in  mechanical properties. 

The second is to provide a m o r e  general  insight into the importance of 

angular orientation on load-carrying ability. 

The study made he re  was a fairly exhaustive one; as will become 

apparent, t o  absorb all the implications of the r e su l t s  r equ i r e s  tedious 

study. In the following discussion every effort will accordingly be made 

t o  extract  only the significant implications, but the cu rves  calculated t o  

yield the resul ts  will be presented in toto. 

2. Analvtical Model and Method of Analvsis 

The moael used f o r  analysis is sketched in f igure 16. Starting 

with a regular a r r a y  of round holes (fig. 16a), we extracted the repeating 

cross-sect ion (fig. 16b) and then allowed the semi-circular  grooves on 

opposite sides t o  be skewed at equal angles as shown in  figure 16c. 

the model becomes similar t o  a plate having integral, waffle-like stiffening 

such t h a t  the r ib  height is equal to  the fillet radius between r ib s  and plates. 

Accordingly, the analysis of reference 13 was employed to find the plate 

st iff ne s s e s . 

Thus 

In the analysis of stretching stiffnesses in r e fe rence  13, two 

undefined constants a r e  employed which are associated with the t r a n s v e r s e  

effectiveness of the integral  ribbing. These constants, labelled @ and B I ,  
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denote the fraction of the r ib  ma te r i a l  active in  res is t ing stretching and 

shearing deformations respectively. 

evaluated (ref. 14). F o r  the oriented voids considered here ,  the fact 

that the tops of all "ribs" a r e  joined integrally with those of the next 

repeating element r equ i r e s  thata  somewhat higher value of 8' be used than 

F o r  t r u e  waffle plates, f i  I has been 

that of reference 14 t o  take into account the mutual r e s t r a in t s  provided 

by these interconnected ribs.  

this higher value of PI, and no bet ter  evaluation of B has been attempted 

than that suggested in  reference 13. Really the exact evaluation of B and 

N o  attempt has  been made he re  to evaluate 

is unimportant to  the general  t r ends  des i r ed  by the present study. 

Rather, it is of g rea t e r  interest  to  allow B and I to  vary over t he i r  

extreme limits and determine the result ing effects on the ma te r i a l  

stiffnesses. Th i s  variation has therefore  been made, and also some 

calculations fo r  Band 8 equal t o  the values derived f r o m  reference 14 

as approximately representative of r ea l i s t i c  st iffnesses have been in- 

cluded f o r  comparison. 

3. Ranges of Proportions Considered 

Calculations were  made of st iffnesses f o r  five s e r i e s  of con- 

figurations of or iented voids in o rde r  to  survey systematically the effects 

produced by various character is t ic  changes. 

culations comprised the following: 

These five s e r i e s  of cal-  

(1) Determination of the principal stretching stiffness, El ,  f o r  

various angles of orientation, 8, of the holes. Values of fi  and 

8 ' between ze ro  and full effectiveness w e r e  considered. 
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(2) Evaluation of the importance of t r ansve r se  shearing effectiveness 

(as measured  by 8') for  all angles 8 of the holes, and for all 

directions of stretching relative to the principal stiffness direction. 

( 3 )  Evaluation of importance of both t r ansve r se  stretching and 

shearing effectiveness for  all angles 8 and all st iffness directions. 

(4) Study of the effects of varying Poisson's ra t io  for  all angles of 

orientation of the voids and "representative" values of t ransverse  

effectiveness. 

(5) Study of combined effects of variation in angles, t ransverse  

effectiveness, and Poisson's ratio. 

Throughout all calculations a hole s i z e  and spacing was  used such 

that 4 G %  of the "original" mater ia l  was "removed" by the holes. 

holes were  located in  square a r r a y s  as suggested in figure 1. 

The 

Sample 

calculations for grea te r  or  l e s s e r  void percentage revealed that the 

magnitude of the variations under investigation were  simply proportional 

to  the percentage of voids, so  that the 4070 values may be considered a s  

representative.  The use of rectangular a r r a y s  instead of square can be 

used to increase the stiffness in one direction at the expense of that at 

right angles thereto. The effect i s  again simply proportional to  the 

relative amounts of mater ia l  in the two directions, and it will  not be 

consider ed fur ther  h e r  e. 

4. Results 

The resu l t s  of the computations a r e  plotted as figures 17 to 21 

inclusive. The resu l t s  a r e  all presented as the rat io  of stretching stiffness 
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t o  the stretching s t i f fness  in the principal direction of an element having 

one-way holes aligned in the direction ( 8  = 0 ), and a Poisson 's  ratio, 

p ,  of 0 . 3 .  Each Figure contains the r e su l t s  of one of the five sub-in- 

vestigations described in the preceding section, and the following sum- 

0 

marizations will categorize the r e su l t s  in corresponding sequency. 

(1) Angular orientation - Unless the t r a n s v e r s e  shearing 

effectiveness (measured by 

stiffness,  E l ,  falls off rapidly as the angle of the holes (e) is 

' ) is high, the principal stretching 

increased f r o m  ze ro  degrees.  

against shearing, however (8 '  = 1 t P ), E 

maximum at 8 = 2 2 . 5  . 

If the ma te r i a l  is 100% effective 

inc'reases to  a 
1 

0 

(2)  Even with 100% t r a n s v e r s e  shearing effectiveness, a material 

with oriented voids is still highly anisotropic if the t r a n s v e r s e  

stretching stiffness i s  low, especially for  low angles of 8 (i.e. 

holes mostly in the same direction). 

8 =  30 o r  4 5  . 
Isotropy is improved at 

0 0 

( 3 )  A s  both band 8' increase,  as would be expected, the material  

a s  a whole becomes m o r e  effective and m o r e  nearly isotropic. The 

The most nearly isotropic ma te r i a l  is achieved, at angles 8 

somewhat l e s s  than 45 , but for  no angle of the voids o r  of loading 

d o e s  the mater ia l  exceed 100% effectiveness (Le.  - 

(4)  

0 

1.0). 
EX 

E l m a x  
For a material  with oriented voids, Poisson's ra t io  is a 

g rea t e r  than normal variations of stiffness with changing hole o r  

load anglc. 

4 4 



(5 )  A s  6, /3', and CC a r e  var ied f r o m  one extreme to  another, the 

resulting stretching stiffness and anisotropies va ry  over a wide 

range. The upper limits reached a r e  in all c a s e s  determined by 

the values of Poisson 's  ra t io  while the lower limits appear t o  be 

pr imari ly  ,a function of the t r ansve r se  stretching stiffness as 

measured by 8 .  Whether o r  not the removal of 4070 of the ma te r i a l  

as holes reduces the stiffness t o  density ra t io  by m o r e  o r  less than 

4070 depends upon all of the variables,  If both 6 and B '  a r e  zero, 

the reduction can  not be kept below 40% fo r  all load incidence angles, 

but it can f o r  angles up t o  as much as 60 0 t o  the principal stiffness 

direction. F o r  values of fi  and /3 I which can perhaps be considered 

rea l i s t ic  ( r e f e r  back t o  f ig .  2 0 ) ,  4070 of the ma te r i a l  can be removed 

with l e s s  than 25% reduction in  stiffness/density ra t io  f o r  all angles 

s f  load incidence. 

5. Conclusions and Discussion 

The first and perhaps most important conclusion that may be drawn 

f r o m  the many pa rame t r i c  variations considered is that the stiffness-to- 

density ratio of a ma te r i a l  can not be increased by drilling holes in it, 

unless  by so  doing the Poisson's ratio for  the ma te r i a l  is increased. 

such a hypothetical i nc rease  would be small, and would require  a p r io r  

knowledge of load application direction and/or high t r a n s v e r s e  ma te r i a l  

effectiveness. 

Even 

On the other hand properly oriented holes can be used t o  reduce 

density with little o r  no loss in stiffness-to-density ratio, particularly if 
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a l imited range of angles of load application is t o  be accommodated. 

The fact that a possible increased stiffness-to-density ratio for  oriented 

rods w a s  suggested in ref.15 must be simply a resu l t  of the assumptions 

employed a s  a basis  for  the calculations made therein.  
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C. EXPERIMENTAL STUDIES 

Studies of elliptical f ibers  and particle-matrix composites a r e  

de scr ibed below. 

1. Elliptical F i b e r s  

The evaluation of the t r ansve r se  modulus, E":2, for fibrous 

composites indicated that, for geometry typical of filament wound 

s t ructures ,  the t r ansve r se  modulus is not negligible relative to the 

longitudinal modulus. Thus, any improvement in this t r ansve r se  modulus 

could ref lect  itself as a significant improvement in the performance of 

biaxially stiffened composites. Possible techniques for doing this include 

improving the ma t r ix  modulus as shown in fig. 15 o r  changing the fiber 

cross-section- to improve one t ransverse direction. 

The possibility of using elliptical f i laments instead of round ones 

is not new, but i t  has never been adequately investigated. Such questions 

as: 

aspect r a t io s?  and How long need the ellipse be to permit  substantial load 

What is the t r ansve r se  effectiveness of elliptical inclusions of various 

t ransmission into i t  by shear  f rom the binder? have not been answered. 

In o rde r  to evaluate the f i r s t ,  a n  experimental approach has been s tar ted 

using large,  aluminum inclusions in an epoxy matrix. Photographs of 

the t e s t  specimens a r e  shown in fig. 22. S t r a in  measurements  were 

made with Tuckerman optical gages between interior inclusions as  

identified in the figure. The effective modulus w a s  defined as  the average 

s t r e s s  over the cross-sect ion divided by the s t r a in  in the indicated gage 

length. The result ing values a r e  shown in fig. 22. It is seen that ell ipses 
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with a n  aspect  ratio of four provide a n  8070 increase in t r ansve r se  

stiffness a t  a fiber volume fraction of l e s s  than 500/0. The potential 

for improved performance of fibrous composites utilizing shaped 

fibers appears to warrant  further consideration. 

2 .  Part ic le  komposites 

The potential for improving composite performance by adding 

stiff particles to the ma t r ix  ma te r i a l  has been studied experimentally for 

several  applications. 

modulus can provide a substantial improvement in the t r ansve r se  Young's 

modulus of a fibrous composite. Also a n  increase in matr ix  modulus can 

result  in an improvement in compressive strength due to the improved 

support stiffness provided for the fibers.  Fu r the r ,  the combined va r i a -  

tion of stiffness and density may lead to a low density mater ia l  suitable 

A s  discussed previously, an improvement in matr ix  

for large dimension, low load, compression applications. The experi-  

mental resul ts  for various additives to a n  epoxy plastic matr ix  a r e  

de s c r  ibe d be 1 ow. 

Glass particles 

G l a s s  particles ranging in character is t ic  dimension f rom 10 to 

200 microns were used in an epoxy matrix. The compression modulus 

was measured on a specimen with volume fractions of 0.284 of glass, 

0.660 of epoxy and 0 . 0 5 6  of void spaces. The r e su l t s  a r e  given in the 

f o 1 low ing tab le : 
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Glass  Par t ic le  -Epoxy Composite 

Epoxv Glass  - E ~ o x v  

Density (lb/in3) 0.0462 0.0565 

0.46 1. 04  Young's Modulus (10 6 psi)  

(compre ssion) 

Modulus /Density Ratio 1.0 1. 8 
( a rb i t r a ry  units) 

(Modulus)1/2/Density Ratio 1. 0 1. 0 
( a rb i t r a ry  units) 

Alumina par t ic les  

The effect of the addition of small  solid alumina par t ic les  (900 

mesh  and sma l l e r )  upon the modulus of a n  epoxy was measured. The 

test specimens are shown in fig.  23. The loaded epoxy contained 

40. 9% alumina by volume and the resul ts  a r e  shown in the following 

table. 

Powdered Alumina-EDoxv ComDosite s 

Density (lb/in3) 

Epoxy Alumina-Epoxy 

0.0464 0.0746 

0. 52 1. 3 2  Young's Modulus (10 6 psi) 

(compression)  

Modulus /Density Ratio 1. 0 1. 6 
( a rb i t r a ry  units) 

(Modulus)'/'/Density Ratio 1. 0 1. 6 
( a rb i t r a ry  units) 
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Hollow alumina pa r  t icles 

The attainment of a relatively stiff but low density mater ia l  

through the introduction of voids w a s  studied by using hollow alumina 

spheres as a stiffening ma te r i a l  in an epoxy matrix.  

specific gravity of the spheres  was 0. 73 and the samples  contained 57% 

spheres by volume. 

0. 131 in. 

following table: 

The average 

The sphere diameters  were between 0.065 and 

The specimens a r e  shown in fig. 24 and the t e s t  r e su l t s  in the 

Hollow Alumina-Epoxy Composites 

Epoxy Alumina-Epoxy 

Density (lb/in3) 0.0464 0. 0341 

0.55 0. 84 Young's Modulus (10 6 psi) 

(c ompre s s ion) 

Modulus /Density Ratio 1. 0 2.1 

(Modulus ) / Dens i t  y R a t  io 1. 0 1. 7 

( a rb i t r a ry  units) 

Fu r the r  studies of these mater ia ls  under tensile loads a r e  

described in section IIIC. 

the addition of alumina and glass  par t ic les  produced a significant and 

expected increase in the ma t r ix  modulus. 

plastic may be a useful constituent in a fiber g l a s s  composite. 

question of proper geometry to achieve both suitable mechanical 

properties and a l so  proper viscosity to permit  fabrication remains 

unans w e red. 

F r o m  the above r e su l t s ,  i t  can be seen that 

It appea r s  that a loaded 

The 
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The low density alumina mater ia l  offers improved stiffness at 

Fai lure  for the tes t  specimen reduced density, but has  low strength. 

occur red  a t  7200 psi. 
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111. TENSILE STRENGTH 

A frequent cr i ter ion to be used in the selection of composite 

materials is the ultimate tensile strength of the material .  Section A 

contains an analysis of the tensile strength of uniaxially reinforced 

f i b r o u s  composites. The validity of the analysis is tested by the 

experimental program described in section B. The modification of 

matrix properties to improve composite strength is t r ea t ed  in section 

C. 
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A. FIBER REINFORCED MATERIALS 

1. Introduction 

Composite materials consisting of a ductile matrix reinforced 

by high- strength, high-stiffness f ibe r s  are  materials of considerable 

engineering practicality. 

loads has  been studied theoretically with only limited success.  

analytical understanding of the f a i l u r e  of such materials is desirable,  

not only t o  provide adequate design methods f o r  existing materials, but 

a lso t o  enable the definition of desirable cha rac t e r i s t i c s  of constituents 

of composites fo r  future applications. The problem treated h e r e  is the 

fai lure  of a composite, consisting of a matr ix  stiffened by uniaxially 

oriented f ibe r s  when subjected to  a uniaxial tensile load paral le l  t o  the 

f iber  direction. 

The strength of such materials under tensile 

An 

The f a i lu re  of a uniaxially stiffened ma t r ix  has  been studied 

previously by seve ra l  investigators. 

in c 161 . The s implest  failure model t reated assumes  that a uniform 

s t r a in  exis ts  throughout the composite and that f r ac tu re  occurs  at the 

fai lure  s t r a in  of the f ibe r s  alone (e.g. c 171). 

uniform s t r a in  distribution was studied in [ lS1  which suggests the in- 

fluence of f iber  flaws on composite fai iure .  

when the accumulation of fiber f ractures  result ing f r o m  increasing load 

shortens the f iber  lengths to  the point that fur ther  i nc reases  in  load 

could not be t ransmit ted t o  the f ibe r s  because the maximum mat r ix  shea r  

s t r e s s  was exceeded. Thus, composite fa i lure  resul ted f r o m  a shea r  

failure of the matrix. 

Their findings are summarized 

The effect of a non- 

In [ 181, 'failure occurs  
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In the present paper f i b e r s  a r e  t r ea t ed  as having a statistical 

distribution of flaws or imperfections which r e su l t  i n  fiber fa i lure  at 

various s t r e s s  levels. 

unbroken f ibe r s ,  at the weakest cross-section, are unable t o  resist 

Composite fa i lure  occurs  when the remaining 

the applied load. Thus, composite fa i lure  r e su l t s  f r o m  tensi le  f r ac tu re  

of the fibers.  The composite strength is evaluated herein as a function 

of the statist ical  strength cha rac t e r i s t i c s  of the f iber  population and of 

the significant p a r a m e t e r s  defining composite geometry. A numerical  

example is presented fo r  f iber-glass  reinforced plastic composites 

utilizing the existing data  for  tensile strength of g l a s s  fibers.  

2. Description of The Model 

The composite t r ea t ed  is shown in  Fig .  25 and consis ts  of 

parallel f i be r s  in an otherwise homogeneous matrix. The f ibers  a r e  

t reated as having a statist ical  distribution of flaws o r  imperfections 

which resul t  in f iber  fa i lure  under applied s t r e s s .  The statist ical  ac- 

cumulation of such flaws within a composite material resul ts  in com- 

posite failure. The computation of stress is quite complex when there  

a r e  discontinuous f ibe r s  present.  These  internal discontinuities resul t  

i n  shear s t r e s s e s  which may locally attain v e r y  high values. An exact 

evaluation of this s t r e s s  distribution fo r  the complex geometry of c i r cu la r  

cross  section f ibe r s  a r r ayed  within a matrix and fo r  inelastic ma t r ix  

s t ress-s t ra in  cha rac t e r i s t i c s  appears  t o  be unattainable f r o m  a practical  

viewpoint. 

shape and without the effect  of surrounding f ibers .  

similar to  that of [ 20 1 ,  but including the effect  of surrounding f i b e r s  is 

obtained herein. 

Such stresses w e r e  evaluated in [ 193 for  idealized f ibe r  

An approximate solution, 
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In the present model, the extensional s t r e s s e s  in  the ma t r ix  a r e  

neglected relative to  those in the f iber  and the shear  s t ra ins  in the f iber  

a r e  neglected relative to  those in the matrix. 

the model i s  considered appropriate f o r  fibers which a r e  very strong and 

stiff relative to the matrix. In the vicinity of an internal f iber end, in 

such a composite, (fig. 25) the axial load c a r r i e d  by the fiber is t r ans -  

mitted by shear  through the ma t r ix  to  adjacent f ibers .  A portion of the 

fiber at each end i s  therefore  not fully effective in resist ing the applied 

s t ress .  

along the fibers.  

This approximation of 

As the f ibe r s  a r e  loaded, failure occurs  at points of imperfection 

Increasing load produces an increasing accumulation 

of fiber f rac tures  until a sufficient number of ineffective fiber lengths 

combine to  produce a weak surface and composite f racture .  Basically, 

then, the model considers f ibers  which fail as a resul t  of statist ically 

distributed flaws or imperfections , and composites which fail as a resul t  

of a statist ical  accumulation of such flaws over a given region. 

At  some distance f r o m  an internal f iber  break  the fiber s t r e s s  

One will be a given fraction, 9, of the undisturbed f iber  s t r e s s  (J 

may define this  f ract ion of the average s t r e s s  such that the fiber length, 

6, over which the s t r e s s ,  0 , is l e s s  than Q may be considered in- 

effective. Thus, th i s  ineffective length, 6 , is defined: 

a' 

a 

o ( 6 ) = ( P o a  

Then, the composite may be considered to be composed of a s e r i e s  of 

layers  of dimension, 6 . Any fiber which f r ac tu res  within this layer ,  

in addition to  being unable to  t ransmit  a load a c r o s s  the layer,  will  a lso 
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not be  s t r e s s e d  within that layer  to  m o r e  than the s t r e s s ,  o The applied 

load i s  t reated as uniformly distributed among the unbroken f ibe r s  i n  each 

layer. 

i n  the chain which constitutes the fiber.  

such links; and the composite is a s e r i e s  of such bundles. 

a' 

The segment of a fiber within a layer  may be considered as a link 

Each layer  is then a bundle of 

The t reatment  of a fiber as a chain of links is appropriate to  the 

hypothesis that f r ac tu re  is  a resul t  of local imperfections. The links may 

be considered to have a 

to the statist ical  flow distribution along the fibers.  

a model is demonstrated by the length dependence of f iber  strength. 

is, longer chains have a high probability of having awedrer link than shor t e r  

statist ical  strength distribution which is equivalent 

The r e a l i s m  of such 

That 
0 

chains and this ag rees  with experimental  data (e. g. r.211) which demonstrate 

that f i be r  strength is  a monotonically decreasing function of f iber  length. 

F o r  this model, the link dimension is defined by a shear  lag type 

approximate analysis of the s t r e s s  distribution in the vicinity of a broken 

end. The statist ical  strength distribution of the links is then expressed as 

a function of the fiber strength-length relationship, which can be experi-  

mentally determined. 

of a s e r i e s  of bundles of links t o  define the distribution of bundle strengths. 

(Statistical techniques fo r  a s e r i e s  of bundles have been studied in  [ 221 

f o r  application to  particle reinforced composites. ) The composite fails 

when any bundle fails and the composite strength is thus determined as 

a function of f iber  and ma t r ix  character is t ics .  

problem a r e  discussed in fu r the r  detail  below. 

Then these r e su l t s  are used i n  a statist ical  study 

These  aspects  of the 
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3. Fibe r  Strength 

The statistical distribution of link strength is obtained f r o m  the 

fiber strength distributions. 

tribution function f(o ) and the as sociated cumulative distribution function 

F(u) where: 

Consider links character ized by the dis- 

F(u) = P f (o)  do (1) 
0 

F o r  n such links forming a chain which fails when the weakest l ink fails 

the distribution function g (o )  fo r  the chain is defined by: 

g(0) = nf(0 ) [ 1 - F(O) 1 n-l (2) 

That is, g (U ) do is the probability that one link fails between u and 

cr t do(which is equal t o  f ( Q )  do ), multiplied by the probability that all 

remaining (n  - 1) links exceed Q t do (which is [ 1 - F ( (J )I 
failure can occur at any of the n links. 

tribution function, G ((3 ), fo r  the f i b e r s  i s  obtained: 

n- 1 
) and 

From this,  the cumulative dis- 

U 
G (0 ) = s g  ( 0 )  do ( 3) 

0 

.*. G ((3 ) = 1 - [ l  - F ((2) 1" (4) 

The solution of the inverse problem is desired. That is, given 

the f ibe r  data, g (U ) and G ( u ) ,  define the link data fo r  a link length, 6 . 
F r o m  eq. (4): 

1 /n F ( o )  = 1 - [ 1 - G ( o ) l  

and thus f r o m  (1) and ( 5 ) :  

(5) 
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CZt)nsider f ibe r s  character ized by a strength distribution of the Weibull 

type C231 : 

(7)  g (u) = L a ~ 2 - l  exp (-L o1o B 

Tr.is form has been shown t o  character ize  the experimental  length-strength 

relationship of f ibers .  Using equation (7)  in ( 3 )  and (6) yields: 

where: L = n6 

The constants a and @ can be evaluated by using experimental  
- 

f strength-length data. 

for a given length which, is defined by: 

To  do this,  consider the mean fiber strength, 0 

0) - 
0 = o g ( 0 )  do 

C 
f ( 9 )  

Substituting eq. (7) into (9) and integrating yields: 

A logarithmic plot of the available data f o r o  as a function of L f 

will define the constants. 

data of [ 211. 

Such a plot i s  presented in  fig. 26 f o r  the 

The l inearity of the da t a  support the choice of the dis-  

tribution function given by eq. ( 7 ) .  The constants are found t o  be: 

-2 
Q! = 7.74 x 10 

,8 = 7.70 

The constant is an inverse m e a s u r e  of the dispersion of ma te r i a l  

strength. Values of B between two and four correspond to brit t le ce ramics ,  
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while a value of twenty i s  appropriate f o r  a ductile meta l  [ 221. The 

constant 0, a s  seen f rom eq. ( l o ) ,  defines a character is t ic  stress level, 

Q - 'Ip. F o r  this distribution, 01 -'"is 305 ksi. A more  useful reference 

s t r e s s  level i s  mentioned in the discussion section. 

4. Effective Fiber  Length 

The definition of ineffective length, 6 , involves the determination 

of the shear  s t r e s s  distribution along the f iber-matr ix  interface. The 

model used i s  shown in fig. 27 and consists of a f iber  surrounded by a 

ma t r ix  which in turn is imbedded within a composite material .  

has the average or effective propert ies  of the composite under consider- 

ation. 

analysis is utilized to estimate the s t resses .  

The la t ter  

This configuration i s  subject t o  axial s t r e s s  and a shear  lag type 

Load is applied paral le l  t o  the fiber direction. The fiber is as- 

sumed to  c a r r y  only extension and the matrix to  t r ansmi t  only shear 

s t r e s ses .  No s t r e s s  i s  t ransmit ted axially f r o m  the fiber end to  the 

average material .  Shear s t r e s ses  in the average mater ia l  a r e  considered 

to  decay in a negligible distance f r o m  the inclusion interface. 

F o r  equilibrium of a fiber element in  the axial direction: 

where 7 = shear  s t r e s s  in ma t r ix  material  

0 = axial s t r e s s  in f iber  f 

F o r  equilibrium of the composite in the axial direction: 
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where u = axial stress in average material 

u = applied axial stress 

a 
- 

The displacements i n  the f iber ,  uf, and in the average material, 

define the. binder shea r  strain,  y ,  as follows: 
ua' 

u t  a f  - u = (rb - rf) Y (14) 

Differentiating eq. (14) twice and using the s t r e s s - s t r a in  relations 

yields : 

duf r - r  2 
b f d T  

2 
Gb de 
- 1 a 1 

E dz  Ef dz 
-----= 

a 

where E = effective Young's modulus of the composite 

= Young's modulus of the fiber 

a 

f 

b 

E 

G = shear  modulus of the binder 

Differentiating eq. (13) and substituting the r e su l t  and eq. (12) 

into eq. (15) yields: 

2 
- V T = O  

d'T 
2 

dz  
- 

where 

The solution t o  eq. (16) is of the f o r m  

7 = Asin h r)  z t Bcos h 7 z 

The boundary conditions a r e :  

T ( 0 )  = 0 

(J ( 4 )  = 0 f 
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.*. B = O  

and 

2 
b a  

G O r  
7 7  A =  
L - r )  ( r a  - r  L, cosh qf, 

q E a ( r b  f b 

qE, (rb-rf) (ra L, -rbL) cosh T) 4 

F r o m  eqs. (12) and (20): 

b Consider r > >  r a 

2 2G2 :. 7 = - 
1 

a r  E 

and f rom eq. (21): 

- 
O E i  c o s h q z  

= - - E [ cosh qf, - '1 f 
a 

The maximum axial s t r e s s  i s  

- 
- = Ef - -  

a 
E 

Using the resu l t s  of this elastic analysis, the s t r e s s  ra t io  .cP i s  

evaluated f rom the rat io  of the s t r e s s  at a distance 6 f rom the end of a 

given fiber to the s t r e s s  at the midpoint of a very long fiber. The s t r e s s  

at a point at distance 6 f rom a f i b e r  end i s :  



cosh  7) ( k - 6 )  uf (t - 6 )  = - - 
a cosh  r )  .( E 

The fiber efficiency, V , at this point is therefore  defined by: 

for  large 4, : 

tanh 714 = 1 

,'. Cp = 1 - cosh 776 t ( c o s h  2 7)6 - 1)112 

From which 

2 
1 t (1 - (4) 
2 ( 1  - c p )  

cosh 7) 6 = 

and 

r l 7  1 1 1 2  
- - -  "f 

df 2 6  - -1 cb cash 

6 1 

L .a 

For the purposes of th i s  analysis a value of 

6 is evaluated for  this stress ra t io  value. Thus, effective length is that 

portion of the fiber i n  which the average axial s t r e s s  is g rea t e r  than 90% 

of the s t r e s s  which would exist  for infinite f ibers .  

variation of ineffective length with constituent moduli fo r  various f iber  

concentrations. 

= 0.9 is  considered, and 

Fig. 28 shows the 

The s t r e s s e s  upon which these r e su l t s  a r e  based are shown in  

fig. 29. 

will exceed the elastic l imit  of the mater ia l .  

It i s  c l ea r  that f o r  many composites the ma t r ix  shea r  stresses 

The point at which the e las t ic  
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limit is reached is indicated on each.curve of fig.  29 for  a matrix shear  

yield s t r e s s  of one tenth the f iber  strength. Since for  high concentrations 

most  of the curves a r e  above the elastic limit, fur ther  inelastic analysis 

i s  required. Note also that the resu l t s  of this  shear lag model differ in  

charac te r  f r o m  those of ref.  20. The difference is attributable to  the 

addition of the third o r  average mater ia l  to the model. 

The elastic analysis of this  section has been extended to  include 

the effects of an elastic plastic binder. T o  do this,  consider a region at 

the f iber  end in which the shear  s t r e s s  i s  equal to the shear  yield stress, 

7 , thus: 
Y 

2 7  

r 
f 

= 2 (t- z) 4 - b S z s  4 (30) O Z  

Equation (12) applies for :  0 S z 5 4- b. The analysis for  the elastic 

region is unchanged except that  the boundary conditions (19) a r e  replaced 

by : 

T ( 0 )  = 0 

T(4-b) = 7 
Y 

Substitution of (31) into (18) yields 

sin. qz 
y s in  Q(4- b) 

7 = 7  

F r o m  eqs. (12), (13) and (32) it can be shown that: 

- 27 
o - y cosh QZ (33) o =  f ‘lrf sinh V ( t - b )  

a a 
f o r o <  z g 4  - b  
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The length b is evaluated by assuring continuity of s t r e s s  at z = L -  b. 

Thus f r o m  eqs. (30)  and (33) :  

2 7  b 
Y 
r 

. f  

F o r  r > > r this reduces to: 
a b 

- 
U E  r 

- -  coth q t  f f  

Y a  
b =  

2 7  E 7) 
( 34) 

Now the ineffective length can  be evaluated, as defined by eq. (26) 

by using eq. (33) .  

6 > b. 

It w i l l  be assumed and subsequently confirmed that: 

Large values of fiber length relative t o  all other f iber  dimensions 

will be assumed. The r e su l t  is: 
7 

where 

Simultaneous solution of eqs. (34)  - (36) defines the inneffective length. 

A limiting c a s e  is obtained for a rigid-plastic mater ia l .  F o r  a 

uniform shear s t r e s s ,  the length, 6 

of the fiber is:  

required t o  obtain the full strength 
P' 

0 
f 

df 
6 = -  

Y P 4 7  
(37)  
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Thus, for  a composite of 400 k s i  glass f ibe r s  in a 10 k s i  plastic 

binder, the plastic ineffective length i s  ten fiber d iameters .  

is about four t imes  the appropriate elastic value. 

This  value 

5. Composite Strength 

With the link length defined, [ by eq. (29)  for  the elastic case ;  

eqs. (34 )  t o  (36 )  for the elastic-plastic case; and eq. (37)  for the rigid 

plastic c a s e ]  and the link strength character ized by eq. (8), the com- 

posite s t rength can be evaluated. F i r s t  the strength of the bundle will 

be determined,  then the composite w i l l  be t rea ted  a s  a chain of bundles, 

and weakest link statist ical  theorems will be applied. This  leads t o  the 

des i red  statist ical  definition of composite strength. 

F o r  a bundle of links, Daniels [ M I  has shown that for a la rge  

number,  N, of f i be r s  the distribution of bundle strengths approaches a 

normal  distribution with expectation: 

- 
U = ( J  [ l - F ( ( J  )I B m m (38) 

and s tandard deviation: 

The associated density distribution function is: 

The maximum s t r e s s  i s  obtained by maximizing the total load. 

Thus: 

d 
du 
- u [ l  - F (0) 1 = o  

u = u  m 
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F o r  links descr ibed by eq. (8): 

B F(u) = 1 - exp ( - a  6 u ) 

Substitute (42) into (41): 

= o  d B - [uexp  ( - a 6 0  ) 3 d7 a = u  

From ( 3 8 ) ,  (42) and (43): 

From (39), (42) and (43): 

Lavers  character ized by eqs. (40), (44) and (45) may be con- 

sidered as links in a chain and the weakest link theorems can be applied 

again. Thus, applying eq. (2) t o  th i s  c a s e  

x (uc) = n w (oc) 1 - sz (u c) I *-' (46) 

where u is the composite fa i lure  stress, and Xis the associated dis-  
C 

tribution function. 

The mode of th i s  distribution is found by setting dX /do = 0. 
C 

This yields: 

(47) 
a:c - 1 / 2  log log n t log 4n 

1 I 2  
2(2 log n) "B 

0 = uB - +B ( 2  log n) 
C 

F o r  composite dimensions l a rge  compared t o  fiber cross-sect ion dimen- 

sions, N > > I .  Therefore:  
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and the statist ical  mode of the composite strength 0 *, is found t o  be: 
C 

(48) 
- 118 uc* = ( a  6 @ e )  

where CY and B a r e  the constants defining the link s t rength and a r e  de-  

te rmined  by experimental  t e s t s  of f i be r  strength vs.  length as descr ibed 

previously. 

analysis and e is the base of natural  logarithms. 

6 i s  the ineffective length defined by a f iber  shear  s t r e s s  

The r e su l t s  of section 3 a r e  used in eq. (48) t o  compute com- 

posite s t rength as a function of  the effective length. 

composite failure stress is plotted in f ig .  30 f o r  t he  range of ineffective 

lengths of one t o  one hundred f iber  diameters .  

general ly  corresponds t o  the elastic predictions and the range ten t o  one 

The  predicted 

The range one t o  ten 

hundred to  the inelastic predictions. 

Also shown in fig. 30 a r e  the effects of var ia t ions in fiber charac te r -  

is t ics .  

pers ion,  as measured  by a 10% change in f l  and of a dec rease  in the 

re ference  s t rength as measured  by a 10% change in  o! -’”. F o r  the 

re ference  case  plotted, the analysis also indicates that at fa i lure  the 

mean number of f rac tured  f ibers  per  layer is l e s s  than 10% and that the 

length at which the mean fiber s t rength equals the f iber  s t r e s s  in the 

composite, at the most probable composite failure s t r e s s ,  is on the 

order  of ten ineffective lengths. 

Curves a r e  presented to  show the effect of an increase  in the dis- 

F o r  a rigid-plastic representation of the binder mater ia l ,  failure 

points fo r  two different yield s t r e s s  values a r e  shown. Thus, for  the 
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fiber data used, and f o r  a yield s t r e s s  of 10 ksi ,  the predicted s t rength 

of a glass-plast ic  composite of 7070 f ibers  by volume i s  290 ksi .  

the same  conditions binder yield s t r e s s  of 20 k s i  would indicate a com- 

posite failure s t r e s s  of 310 ksi. The effects of mat r ix  charac te r i s t ics  

a r e  more  plear ly  defined by considering the elastic-plastic resu l t s  ob- 

tained in the la t ter  par t  of section 4. 

F o r  

Mechanically, the elastic-plastic ma t r ix  mater ia l  is charac te r ized  

by the initial elastic modulus, the yield s t r e s s ,  and the total s t ra in  t o  

failure. 

of a composite consisting of an elastic-plastic ma t r ix  uniaxially re in-  

forced with glass  f i b e r s  is shown in fig.  31 in the f o r m  of shear  yield 

s t r e s s  vs. elastic shear  modulus requi red  t o  achieve the specified 

constant values of composite strength. 

The influence of these th ree  quantities on the tensile strength 

These r e su l t s  a r e  obtained by selecting a fixed value of composite 

strength, 6 *, and determining the corresponding ineffective length ra t io  

f rom f ig .  30. F o r  the elastic case  the modulus ra t io  E /G  and the 

maximum shear  s t r e s s ,  7 a r e  determined f r o m  figs .  (28) and (29) 

respectively. 

rigid-plastic solution, eq. ( 3 7 ) .  F o r  the region between the elastic 

range, represented by the vertical  portion of the curve, and the fully 

plastic I-ange, represented by the horizontal asymptote,  the combinations 

of values of shear  modulus and shear  yield s t r e s s  which resu l t  in the 

desired ineffective length a r e  evaluated f r o m  eqs.  (34) t o  (36). 

ultimate ma t r ix  shear  s t r a ins  required a r e  not shown; however, they 

C 

1 2  

max’ 

The asymptote for  l a rge  shear  moduli i s  found f r o m  the 

The 
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a r e  approximately para l le l  t o  the strength curves  with decreasing s t ra in  

required fo r  increasing composite strength, 

The s t r e s s  curves  show the nature of property var ia t ions r e -  

quired t o  produce the maximum increase in composite strength. 

example, a composite containing an  elastic-plastic ma t r ix  mater ia l  

with a shea r  modulus of 150 k s i  and a shear yield s t r e s s  of 15 k s i  will 

be unaffected in strength by a f 507' change in shear  modulus but would 

improve in strength with increasing shear yield s t r e s s  and would a l so  

requi re  lower shear  s t r a in  at fa i lure;  similarly, a mat r ix  with a modulus 

of 40 k s i  and a s t rength of 30 k s i  would be far more  sensitive to  modulus 

changes than t o  s t rength changes. 

r e su l t s  t o  be obtained f r o m  the  existing failure model. 

f iber  and mat r ix  mater ia l s  need t o  be considered t o  complete the picture. 

F i b e r s  with different strength levels and strength gradients with respec t  

t o  fiber length, and ma t r i ces  with monotonically decreasing tangent moduli 

should be included. In any event, it appears that the qualitative evaluation 

of the direction of improvement in constituent propert ies  t o  obtain im- 

proved s t ruc tura l  composites can be achieved. 

F o r  

This  is i l lustrative of the nature of the 

Other types of 

One of the reasons  for the quantitative uncertainties can be seen 

by exploring cer ta in  assumptions in  the shear  s t r e s s  evaluation. First 

of all,  t he  idealization t o  a rotationally symmetr ic  problem ignores the 

var ia t ion due to  the  hexagonal or nearly-hexagonal a r r a y  of neares t  

neighbor fibers.  

f iber and surrounding "average" mater ia l  is not an obvious one. 

Secondly, the selection of an average distance between 

Although 
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the magnitude of the f o r m e r  problem cannot be a s ses sed  without the 

solution of a complex elasticity problem, the latter can be studied by 

varying the average distance and determining the resulting effect upon 

composite strength. The r e su l t s  of such a study are shown in  fig. 32, 

where the ineffective f iber  length is plotted as a function of the average 

matr ix  thickness expressed as a multiple of the f iber  radius,  

of abscissa  values cover the range obtained by various reasonable idealiza- 

tions for  a fiber volume fraction of 0. 7. 

6. Discussion and Conclusions 

The range 

The analysis attempts t o  simulate what appears  t o  be the physical 

An effort was made t o  include what were  thought t o  be the failure mode. 

most important p a r a m e t e r s  influencing failure.  

will not provide accurate  quantitative answers  without fur ther  refine- 

ments. It is expected, however, that  the nature  of desirable  improve- 

ments in constituent character is t ics  can be ascertained f rom the present 

model. Such preliminary conclusions will be described below. The  

shortcomings of the model include fai lure  t o  consider f r ac tu re  involving 

parts of m o r e  than one layer ,  variation of ineffective length with stress 

level, stress concentrations in f ibe r s  adjacent t o  fa i lure  areas and the 

initial state of stress. Fur the r ,  as the analysis indicates that short  

fiber lengths may exis t  at fa i lure ,  the shortcomings at short  lengths 

of the statist ical  distribution used fo r  the f i b e r s  should be corrected.  

That is, the limit of fiber strength with decreasing length should be a 

finite value. 

Obviously, t he  model 

F ibe r  experimentation can  provide the data for  such a 
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stat is t ical  model. On the positive side, however, the model represents  

the constituents in the major  functions of f ibers  carrying extensional 

s t r e s s  and ma t r ix  carrying shear  s t resses ;  it includes the effect of f iber 

imperfections on fiber failure;  and accounts for  the accumulation of 

internal c r acks  which combine to produce composite failure.  This la t ter  

follows the concepts of Parratt [18 1 who suggests the influence of flaws 

and ineffective lengths on failure.  

analysis, however, resu l t s  f r o m  an accumulation of c racks  ra ther  than 

f r o m  the existence of fully ineffective fibers.  

which indicate typical f iber  lengths at failure which a r e  an order  of 

magnitude la rger  than the ineffective length, perhaps explain the quan- 

titative difference between the ineffective lengths of E181 and those of 

The failure mode in the present  

In fac t  the present  resu l t s ,  

201 and this paper. The experimental resul ts ,  described in  the 

following section, appear t o  be in qualitative agreement  with the analytical 

models. 

The conclusions to  be drawn f rom the analysis fo r  the glass f ibers  

considered a r e  as follows: Composite failure s t r e s s  will be on the order 

of short  f iber failure s t r e s s ,  where short f ibers  a r e  on the order  of ten 

ineffective lengths. F ibe r  strength levels appear t o  have the most direct  

effect  on composite strength. Fiber strength dispers ion influences com- 

posite strength and ineffective length of fibers has - a significant effect on 

strength. 

and an improvement of ma t r ix  strength appears desirable.  

such changes upon the mode of fa i lure  remains to  be considered. 

The la t ter  is pr imari ly  influenced by the ma t r ix  character is t ics  

The effect of 
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The fact  that these conclusions a r e  not unexpected for glass  r e -  

inforced plastics i s  encouraging, insofar as the possibility of fruitful 

application of this  analysis t o  consideration of other composites and to 

the definition of des i rab le  constituent properties.  Fur ther ,  the actual 

strength levels predicted f o r  glass-plastic composites a r e  higher than 

those obtained experimentally. 

additional damage incurred in  fabrication after the s ta te  at which the 

fiber tes t s  of [ i l l w e r e  performed. 

This  could well be explained by the 
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B. FIBER REINFORCED COMPOSITES - EXPERIMENTAL 

The experimental  study of the mode of failure of fiber reinforced 

composites under a tensile load utilized specimens consisting of a single 

layer of parallel  glass  f ibers  imbedded in epoxy. 

in fig. 33,  has  a t e s t  section which is 1/2" x 1" in size and 0.0061t thick 

and contains 90-100 paral le l  glass  fibers of 0.005" diameter.  

men is loaded in tension and observed microscopically during the test. 

The design of the specimen was directed towards making this observation 

possible, so  that the nature of failure of fibrous composites could be 

determined. 

tested, 

different goal in (25). ) 

The specimen, as shown 

The speci- 

In particular,  the validity of the preceding analysis was to be 

(Similar tes t  specimens appear to have been used with a somewhat 

Both visual observation and photographic observation were used 

on all tes t  specimens. A sequence from a typical set of photographic 

data is shown in fig. 34. The load was applied paral le l  to the fibers.  

Note again, that the fiber diameter is on the o rde r  of five t imes  the 

minimum distance between fibers.  

a t  z e r o  load. 

the f ibe r s  are dark and the plastic between f ibers  appears  light. 

load is increased, the f ibe r s  appear lighter, although this is not ade-  

quately reflected in the photos since the lens aper ture  w a s  changed 

during the sequence. 

photo and the next to  the l a s t  photo in the sequence is four f stops, o r  

a factor  of 16 on the exposure. 

The f i r s t  f r a m e  shows the specimen 

Polar ized transmitted light has  been used and a t  z e r o  load 

A s  the 

The difference between the unloaded specimen 
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At  l e s s  than 5070 of the ultimate load, individual f iber f r ac tu res  

are observed. 

unstressed, the color r e tu rns  to the original da rk  color. Thus, breaks 

appear as a sho r t  dark rectangular a r e a  with a thin white line a c r o s s  the 

center. The length of this dark a r e a  is the ineffective length of the fiber. 

(see section A ) A s  the load increases ,  the f ibers  f racture  a t  random 

locations. Thus, although there a r e  s t r e s s  concentrations in the vicinity 

of the breaks,  the variation in fiber strength generally more  than offsets 

the effect of such concentrations. 

than cumulatively a t  the si te of the initial break. 

cause a relative brightening a t  the highly s t r e s s e d  points of the f ibers  and 

this effect appears  on the latter photos in the sequence of fig. 34. 

there a r e  examples of breaks which were produced as  a r e su l t  of the 

s t r e s s  concentrations. 

Since the f r ac tu red  fiber in the vicinity of the f r ac t a re  is 

Hence, the b’reaks occur randomly rather  

The s t r e s s  concentrations 

Also 

The specimen is shownin the l a s t  f r a m e  after fracture.  It is not 

clear that the actual f racture  simulates the behavior of a three dimensional 

composite and i t  therefore appears  that the internal f r ac tu res  pr ior  to com- 

pos i t e fa i lu rea re  the pr imary  data f r o m  these tests.  

the tes t  l i es  in the potential use of these resultsinconjunction with the 

preceding analysis to predict  and verify the direction of desired constituent 

property improvements to achieve higher tensile strength composites. 

The data for the specimen of fig. 34 a r e  plotted in fig. 35. These resul ts  

are typical of the scat ter  of data points around the best  fit curve. 

curves fo r  the s e r i e s  of tes t  specimens described in table 111-1 a r e  shown 

The usefulness of 

Such 
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i n  fig. 36. 

Spec. 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Gage 
length 

(in. ) 

1.10 

0.91 

1.10 

0. 90 

1.05 

1.02 

1.00 

1. 07 

1.03 

TABLE 111-1 

Tensile Strength Tests - Ser i e s  A 

Width 

(in. ) 

0.499 

0.498 

0.500 

0.502 

0.494 

0.500 

0.498 

0.503 

0.490 

T hickne s s 

(in. ) 

0.0066 

0.0060 

0.0067 

0.0064 

0.0061 

0.0062 

0.0062 

0.0061 

0.0060 

::Failure in g r ip  section. Tes t  data not used. 

Number 
of f ibers  

92 

93 

93 

94 

92 

94 

93 

93 

Ultimate 
load 
(lb. ) 

114 

84::: 

111 

125 

11 6 

117 

11 6 

65::: 

10 7 
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C. PARTICLE REINFORCED MATERIALS 

The m e r i t  of a ma t r ix  ma te r i a l  having enhanced stiffness and 

strength properties compared to presently available plastic r e s ins  is 

clearly evident f rom the analyses of composites. The f i r s t ,  most  

directly available method of improving ma t r ix  propert ies  appears  to 

be to make the ma t r ix  itself a composite. 

specimens were fabricated to investigate the effect of the addition of 

glass and alumina powder to epoxy resin. 

To this end a s e r i e s  of 

The resul ts  bring up more  questions than they answer. 

the stiffness of the particle-composite specimens were duly increased 

by the additives to maxima of 1, 040 ,000  psi  for the glass par t ic les  

(10-200 micron character is t ic  dimensions) and 2, 000,  000 psi  for the 

alumina (325 mesh o r  finer),  the strength and elongation of the r e s i n  

were degraded. A curious accompanying phenomenon w a s  a marked 

increase in viscosity of the glass-filled epoxy r e s i n  before curing. 

increase prevented the fabrication of specimens of greater  than 30% 

volume percent glass. With the alumina par t ic les  48 volume percent 

filler w a s  attained without corresponding difficulties, but to reach the 

maximum value of 62% a l a rge r  particle s ize  (325 mesh)  was required 

than for all the other (900 mesh) alumina-filled specimens. 

While 

This 

Increase in viscosity with addition of particles is certainly to  be 

expected. 

change fo r  the two par t ic les  used. 

viscosity must  be not substantially changed f rom the unfilled value, a 

What is peculiar i s  the difference in character  of the viscosity 

F o r  successful end use the r e s i n  
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c r i t e r ion  that could be met  by the alumina par t ic les  up to a content of 

approximately 40 volume percent,  but the question r a i s e d  of the relative 

importance of the many f a c t o r s  affecting viscosity is not answered by 

the present  results.  

Of much m o r e  interest  and eventual importance than viscosity 

(influence of the f i l l e r s  in the fluid state) is the dec rease  in elongation 

a t  failure of the filled specimens (influence of the f i l l e r s  in the plastic 

state). The Young's 

modulus of the composite is improved substantially, j u s t  as desired,  

and i f  this were  the only effect the implications would be  exciting. 

Accordingly an explanation of the reasons for the poor performance in 

the plastic range could be useful. 

The influence in the e las t ic  state is as expected. 

Answers a r e  needed to questions like: 

1. Is the reduction of elongation dependent upon the ma te r i a l  

used for the f i l l e r ,  - i, e. would a m o r e  compatible o r  better 

bonding fi l ler  be less harmful?  

2. 

of the f i l l e r ,  - i.e. would short ,  very fine f ibe r s  be better than 

essentially spherical  par t ic les  ? 

3. 

were these f i rs t -a t tempt  specimens unsound and can improved 

fabrication technique r e s t o r e  the strength lo s t  by adding the 

f i l l e r  ? 

4. How would even the low elongation filled r e s i n s  of these 

t e s t s  behave as the ma t r ix  for a filament reinforced composite, 

Is the reduction of elongation dependent upon the geometry 

Is the ent i re  problem a result  of poor fabrication, - i. e. 
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i. e. would the development of "fractures"  in the ma t r ix  a t  these 

elongations lead to premature  failure of the composite? 

The actual experimental  resu l t s  which generate all these questions 

a r e  presented in f igures  38 and 39 without fur ther  discussion. 

objective of an  improved mat r ix  mater ia l  is worthy of continued 

investigation. 

The end 
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IV. STRUCTURAL APPLICATION STUDIES 

Although the bulk of this study has been devoted to determining 

composite propert ies  as a function of constituent properties,  it is 

important to emphasize that this is not an end in itself. Analysis of 

basic  applications must  be performed to indicate the nature of desirable 

ma te r i a l  properties.  F o r  example, in the case  of elastic constants, the 

composites a r e  anisotropic and no one simple property of a n  anisotropic 

ma te r i a l  adequately defines the efficiency of a s t ructure  using such a 

material .  Thus, i t  is necessa ry  to perform a s t ructural  efficiency 

type analysis treating generalized s t ructures  and loads. As an example, 

stability of plates with oriented voids, subjected to in-plane compressive 

loads are  t r ea t ed  in section A. Also, the effective properties cannot be 

used a t  the neglect of internal s t r e s s e s .  

fibrous composite s t ructures  biaxial stiffening w i l l  introduce average 

In the case  of a practical  

s t r e s s e s  in individual l aye r s  of a laminate which differ 

f rom the average laminate s t r e s s .  

shear  s t r e s s e s  a r e  t reated in section B as a n  example of this problem. 

considerably 

Certain a spec t s  of the internal 
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A. STABILITY O F  PLATES WITH ORIENTED VOIDS 

A quite different measure  of ma te r i a l  effectiveness than i t s  

extensional stiffness is i t s  ability to c a r r y  compressive o r  shear  

s t r e s ses  without buckling. This measure  must  be applied with dis- 

cretion, because there  a r e  many ways of changing the resis tance of 

buckling. F o r  example obviously the l ea s t  loss  in buckling resis tance 

a s  ma te r i a l  i s  removed to reduce the effective density occur s  when 

the mater ia l  is taken f rom the centroidal plane of the plate, as in 

sandwich construction. 

considered applicable to the case in which a uniform mater ia l  through 

the ent i re  thickness is desired,  for one reason o r  another. 

The problem we a r e  examining he re  may be 

W e  a r e  

then seeking a n  answer to the question: Is there  some angular direction 

which gives a ma te r i a l  uniformly lightened by oriented voids superior 

resistance to buckling? 

Method of analysis 

Available equations f r o m  the l i terature  of the buckling of flat 

plates in compression and shea r  were used to calculate the variation 

of buckling effectiveness with angle of void. The e las t ic  constants 

employed in the equations were calculated with the a id  of (13) i n  similar 

fashion to that employed for the stretching and shearing stiffnesses. 

Essentially the r e su l t  is that the bending stiffnesses a r e  proportional 

to the corresponding stretching stiffnesses,  with account taken f o r  the 

effective Poisson 's  r a t io  applicable to the anisotropic plate. 
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R e su l t s  

The r e su l t s  a r e  summarized in figure 40, in which & r e  plotted 

normalized interaction curves for buckling of simply supported, infinitely 

long plates having voids longitudinally, t ransversely,  and a t  45O to the 

edges. The normalizing factor is the equivalent weight solid plate. The 

plate with longitudinal holes is shown to have the l ea s t  buckling resis tance,  

that with t r ansve r se  holes is better in shear and the same in compression, 

and the one with 45O holes is better in compression and between the Oo 

and 90' c a s e s  in shear. The differences a r e  not substantial. 

Conclusion and Discussion 

While ma te r i a l  with oriented voids does exhibit increased e las t ic  

buckling resis tance because of i t s  lower effective density, the orienta- 

tion of the voids is not important in the e las t ic  range. Probably if any 

cr i ter ion exis ts  i t  is that the holes should in  general  be aligned in the 

direction of principal s t r e s s ,  to delay as long as possible the onset of 

plasticity. 

~ 

I 
I 
I 

I 
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B. LAMINATE SHEAR STRESSES 

A second aspect  of the fai lure  problem which has  been considered 

is the study of shear  s t r e s s e s  in  a biaxially stiffened ma t r ix ;  that is, a 

material  stiffened by paral le l  f i be r s  in l aye r s  which a r e  oriented a-ter - 

nately in each of two directions. 

layer directions to be a t  equal and opposite angles to the loading direction. 

The s t r e s s e s  were determined using the methods developed in (26) .  

resul ts  a r e  plotted in fig. 41. 

normal to the loading direction, T , is shown in fig. 41a, normalized 
XY 

with r e spec t  to the applied s t r e s s ,  

orientation angle, 8 . The principal e las t ic  constants of a n  individual 

lamina are indicated and are typical of glass  reinforced plastic construction. 

The directions paral le l  and normal  to the f ibers  a r e  considered to  be the 

weak shear  planes and the s t r e s s  on these planes, T 1 2  , is therefore a lso 

shown in fig. 41a. The question of failure due to shea r  s t r e s s  involves 

both the shear  s t r e s s  and the shea r  strength distributions. 

shear s t r e s s ,  T,,, , is shown as the upper curve of fig. 41a. 

of mater ia l  propert ies  on the shear  s t r e s s e s  acting in the principal directions 

of each lamina, I , are  shown i n  fig. 41b. The shear  s t r e s s e s  in the 

fiber direction a r e  seen to  constitute a moderately high fraction of the applied 

axial s t r e s s  and as such w a r r a n t  fur ther  consideration as a mechanism of 

failure. 

The case analyzed considers  the two 

The 

The shea r  s t r e s s  on planes parallel  and 

u , plotted as a function of the lamina 

The maximum 

The effect 

12 
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V. CONCLUSIONS 

The present  study of the relationship of propert ies  of composite 

mater ia l s  to proper t ies  of their constituents has been pr imari ly  concerned 

with the evaluation of e las t ic  constants and ultimate tensile strength of 

f ibrous composites. 

the development of the basic  theory governing the behavior of such 

mater ia ls .  

elasticity, bounds on the elastic constants of fiber reinforced ma te r i a l s  

have been obtained. 

bounds a r e  exact. 

approximate expressions a r e  obtained. These r e su l t s  can be used to 

study the potential of fibrous composites utilizing any combination of 

constituents. 

The effort has been pr imar i ly  directed towards 

Thus, by the use of variational principles of the theory of 

F o r  parallel  fibers in an  hexagonal a r r a y ,  the 

F o r  parallel  f ibers  in a random a r r a y ,  s impler  

The numerical  r e su l t s  obtained, indicate that the effect of the 

ma t r ix  upon most  of the constants is far f rom insignificant. 

means of attaining improved s t ruc tura l  composites thus include using an  

improved fiber o r  modifying the binder mate’rial for a given fiber. 

aspec ts  of the la t ter  approach have been studied experimentally, with the 

indication that loaded plastics a r e  advantageous. 

f iber  considered has  been a non-circular fiber. 

the t r a n s v e r s e  modulus of composites containing elliptical f ibers  of aspec t  

ra t io  four, can be almost  doubled f o r  only moderate  fiber volume fractions. 

These s tudies  of elastic constants have demonstrated potential methods of 

controlling any given elastic constant. It is now necessary  to study cer ta in  

The possible 

Certain 

One type of improved 

I t  w a s  demonstrated that 
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typical aerospace s t ructural  applications to define the des i r ed  type of 

improvement of these constants and the relative m e r i t s  of various 

potential improvements. 

have been performed. 

would permit  the present resul ts  to  be used to define guidelines for the 

development of improved composite mater ia ls .  

P re l imina ry  s t ructural  application studies 

Extension of such s t ructural  efficiency studies 

The second major  aspect  of the present  work is the study of the 

tensile strength of fibrous composites. 

imperfections upon fiber strength have been used as the basis  of a model 

which hypothesizes composite failure to be the r e su l t  of a statist ical  

accumulation of randomly occuring fiber f ractures .  

problem involved an approximate t reatment  of the s t r e s s  distribution in 

the vicinity of an internal fiber fracture.  These r e su l t s  enable the 

evaluation of a l ternate  possible modes of failure. An experimental  

study utilizing reinforced plastic fi lm specimens,  observed microscopically 

during loading, w a s  undertaken to qualify the analysis and provide quanti- 

tative evaluation of parameters  i n  the analysis. The experimental  r e su l t s  

correlated closely with the failure model utilized in the analysis and i t  

appears that the joint use of theoreticai  and experimentai  r e su l t s  can 

define the desirable character is t ics  for improved s t ruc tu ra l  composites. 

Again, the analysis indicates that significant improvement in composite 

performance can be obtained by variation of ma t r ix  propert ies  as well 

a s  by the obvious changes in fiber character is t ics .  

The observed influence of fiber 

The study of this 
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It appea r s  that the proper understanding of the mechanics of 

deformation and failure of composites can indeed contribute to the 

attainment of the many potential improvements composites have long 

been known tQ offer 
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Figure  34c. Typical  Sequence of Photographs of Tens i l e  F a i l u r e  
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Figure  34e. Typical Sequence of Photographs of Tens i le  F a i l u r e  
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F i g u r e  4 1. S h e a r  S t r e s s e s  in B iax ia l ly  St i f fened,  F i l a m e n t - M a t r i x  
C om p o s i t  e s 
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